find the area of the quadrilateral ABCD in which AB equal to 3 cm BC equal to 4 cm CD equal to 4 cm equal to 5 cm and ac equal to 5 cm. find the the answer of 12.2.
Answers
Answer:
Find the area of a Quadrilateral ABCD in which AB=3cm, BC=4cm ,CD=4cm, DA=5cm and AC=5cm.
•••••• ::::::: SOLUTION ::::::::••••••
Area of Quadrilateral = Ar of ∆ABC + Ar of ∆ADC
◆ • • Area of ∆ ABC
by using Heron's formula :
\begin{lgathered}= \sqrt{s(s - a)(s - b)(s - c} \\ s = \frac{a + b + c}{2} = \frac{3 + 4 + 5}{2} = \frac{12}{2} \\ = 6 \\ \\ ar \: of \: triangle \\ = \sqrt{s(s - a)(s - b)(s - c)} \\ = \sqrt{6(6 - 3)(6 - 4)(6 - 5)} {cm}^{2} \\ = \sqrt{6 \times 3 \times 2 \times 1} {cm}^{2} \\ = \sqrt{6 \times 6} = 6 {cm}^{2}\end{lgathered}
=
s(s−a)(s−b)(s−c
s=
2
a+b+c
=
2
3+4+5
=
2
12
=6
aroftriangle
=
s(s−a)(s−b)(s−c)
=
6(6−3)(6−4)(6−5)
cm
2
=
6×3×2×1
cm
2
=
6×6
=6cm
2
◆ • • Area of ∆ ADC
by using Heron's formula
\begin{lgathered}s = \frac{a + b + c}{2} \\ = \frac{5 + 4 + 5}{2} = \frac{14}{2} = 7 \\ \\ ar \: of \: triangle \\ = \sqrt{s(s - a)(s - b)(s - c)} \\ = \sqrt{7(7 - 5)(7 - 4)(7 - 5)} \\ = \sqrt{7 \times 2 \times 3 \times 2} \\ = 2 \sqrt{21} \ {cm}^{2} \\ = 2 \times 4.58 = 9.16 {cm}^{2}\end{lgathered}
s=
2
a+b+c
=
2
5+4+5
=
2
14
=7
aroftriangle
=
s(s−a)(s−b)(s−c)
=
7(7−5)(7−4)(7−5)
=
7×2×3×2
=2
21
cm
2
=2×4.58=9.16cm
2
now ,
AREA of Quadrilateral = ar of ∆ABC + ar of ∆ADC
\begin{lgathered}=( 6 + 9.16) {cm}^{2} \\ = 15.16 {cm}^{2} \\ = 15.2 {cm}^{2} (approx.)\end{lgathered}
=(6+9.16)cm
2
=15.16cm
2
=15.2cm
2
(approx.)
So , the area of Quadrilateral ABCD is 15.2cm sq.
Given :-
- ABCD is a quadrilateral in which AB = 3 cm , BC = 4 cm , CD = 4 cm , DA = 5 cm and AC = 5 cm.
To find :-
- The area of quadrilateral
Solution :-
In ∆ ABC
- a = 3 cm
- b = 4 cm
- c = 5 cm
⭐ By using Heron's formula,
Hence,the area of ∆ ABC will be 6 cm².
Now,
In ∆ ACD
- a = 5 cm
- b = 4 cm
- c = 5 cm
⭐ By using Heron's formula,
Hence,the area of ∆ ACD will be 9.2 cm²
Then,
Area of quadrilateral ABCD = Area of ∆ABC + Area of ∆ ACD
Area of quadrilateral ABCD = 6 + 9.2
Area of quadrilateral ABCD = 15.2 cm²
Hence,the area of quadrilateral will be 15.2 cm².