Math, asked by krishraajiGug, 1 year ago

Find the area of the region bounded by the curves y 2 = 4ax and x 2 = 4ay

Answers

Answered by kvnmurty
65
y² = 4 a x          and   y = x² / 4 a

find intersection points:  y² = 4 a x = x⁴ /16a² 
=>  x,y = (0, 0)   or      (4 a, 4a)

Area:

= \int\limits^a_b {[y_1-y_2]} \, dx \\\\= \int\limits^{4a}_0 {[\sqrt{4a}\sqrt{x}-x^2/4a]} \, dx \\\\=[\frac{4\sqrt{a}}{3}(x)^\frac{3}{2}-\frac{x^3}{12a}]_0^{4a}\\\\=\frac{32a^2}{3}-\frac{16a^2}{3}\\\\=\frac{16a^2}{3}

Similar questions