Math, asked by aaronshaju1, 6 days ago

Find the area of the rhombus having perimeter 40cm and the length of one of
its diagonal is 16cm.

Answers

Answered by AestheticHour
4

{ \boxed {\huge {\frak{ \red{answer}}}}}

Perimeter of rhombus = 40cm

Side = 1/4 × 40 = 10cm

One diagonal = 16cm [ given ]

We know, diagonal of rhombus bisect each other at right angles.

*refer the attachment*

\rm{OB =   \sqrt{{AB}^{2} -  {OA}^{2}}} \\  =  \rm{  \sqrt{ {(10)}^{2} -  {(8)}^{2}}} \\ =  \:  \:  \:  \:  \:  \rm{\sqrt{100 \:  -  \: 64 }} \\  \rm{ = \:  \:  \:  \:  \:   \sqrt{36} = 6cm } \\  \\   \rm{\therefore \: diagonal \: BD = 6 \times 2 = 12cm}  \\  \\ \rm{Now, area \: of \:  rhombus =} \\   \rm{\frac{1}{2} \times product \: of \: diagonals} \\  \rm{ \implies \:  \frac{1}{2} \times 12 \times 16 } \\  \rm{ \implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: 96c {m}^{2} }

_______________________________

Attachments:
Similar questions