Math, asked by dhanraj8632, 1 year ago

Find the area of the segment of a circle of radius 14cm, when the angle of the corresponding Sector is 30°

Answers

Answered by ALTAF11
101
[ Figure in the attachment ]

Given :- Radius of Circle = 14 cm

The angle of the corresponding sector
( |_ AOB ) :- 30°

Solution :-

theta \: denoted \: by \:  \alpha

area \: of \: segment \:  = area \: of \: sector \:  -  \: area \: of \: corresponding \: triangle

( swipe left )

area \: of \: segment =  \frac{ \alpha }{360}  \times \pi \:  {r}^{2}  -  \frac{1}{2}  \sin(  \alpha  )  {r}^{2}

 = {r}^{2}  ( \frac{30}{360}  \times  \frac{22}{7}  -  \frac{1}{2}  \sin(30) )

 = 196( \frac{1}{12}  \times  \frac{22}{7}  -  \frac{1}{2}  \times  \frac{1}{2} )

 = 196( \frac{11}{42}  -  \frac{1}{4} )

 =  \frac{44 - 42}{168}  \times 196

 =  2.33 {cm}^{2}

Attachments:
Answered by jaslynshawn
19

Answer:

2.33 cm²

Step-by-step explanation:

r = 14 cm      θ = 30°

area of major segment = area of major sector - (1/2)r² sinθ

                                        = (θ/360°)×π×r² - (1/2)r²sinθ

                                        = r²[(θ/360°)×π - (1/2)sinθ]

                                        = 14×14×[(30/360)×(22/7) - (1/2)sin30°

                                        = 14×14×[(11/42) - (1/2)(1/2)]

                                        = 14×14×[(11/42) - (1/4)]  

                                        = 14×14×[(22-21)/84]    {LCM of 42 and 4 is 84}

                                        =14×14×(1/84)

                                        =7/3

                                  =2.33 cm²                      

Similar questions