Math, asked by Anonymous, 6 months ago

Find the area of the square whose perimeter is
(a) 32 cm
(b) 40 m
(c) 54 cm
(d) 31 m​

Answers

Answered by Radha30108
4
Perimeter- 4a

a) 4a=32
a=32/4
a=8

Area=side*side
8*8
64

b) 4a=40
a=40/4
a=10

Area = side*side
10*10
100

c) 4a=54
a=54/4
a=13.5

Area = side*side
13.5*13.5
182.25

d) 4a=31
a=31/4
a=7.75

Area = side*side
7.75*7.75
60.0625
Answered by DüllStâr
46

Question:

Find the area of the square whose perimeter is

(a) 32 cm

(b) 40 m

(c) 54 cm

(d) 31 m

To find :

  • In each case we have to find Area of square .

Given:

  • In each case value of Perimeter is given

Formula used:

  •  \sf \: perimeter = 4 \times side
  •  \sf{ Area =  {side}^{2} }

Answer:

Part 1:

 \bf{ \star \: we \: know : }

 \sf \: perimeter = 4 \times side

By using this formula we can find length of side

 :   \implies\sf \: 32 = 4 \times side

  :  \implies\sf \: side =  \dfrac{ { \cancel{32}}^{ \: 8} }{ { \cancel{4}}^{ \: 1} }

 : \implies \blue{   \sf side = 8cm}

Now we can find area by using this formula:

 \sf{Area = side\times side} \:  \:  \:   \:  \: \: or \ \:  \:  \:  \:  \: Area =  {side}^{2}

 :  \implies \sf \: Area =  {8}^{2}

 :  \implies \star \boxed{{ \sf \: Area = 64 {cm}^{2} }} \star

Part 2:

 \bf{ \star \: we \: know : }

 \sf \: perimeter = 4 \times side

By using this formula we can find length of side

 :   \implies\sf \: 40= 4 \times side

:  \implies\sf \: side =  \dfrac{ { \cancel{40}}^{ \: 10} }{ { \cancel{4}}^{ \: 1} }

: \implies \blue{   \sf side = 10m}

Now we can find area by using this formula:

 \sf{Area = side\times side} \:  \:  \:   \:  \: \: or \ \:  \:  \:  \:  \: Area =  {side}^{2}

 :  \implies \sf \: Area =  {10}^{2}

:  \implies \star \boxed{{ \sf \: Area = 64 {m}^{2} }} \star

Part 3:

 \bf{ \star \: we \: know : }

 \sf \: perimeter = 4 \times side

By using this formula we can find length of side

 :   \implies\sf \: 54= 4 \times side

:  \implies\sf \: side =  \dfrac{ { \cancel{54}}^{ \: 13.5} }{ { \cancel{4}}^{ \: 1} }

: \implies \blue{   \sf side = 13.5cm}

Now we can find area by using this formula:

 \sf{Area = side\times side} \:  \:  \:   \:  \: \: or \ \:  \:  \:  \:  \: Area =  {side}^{2}

 :  \implies \sf \: Area =  {13.5}^{2}

:  \implies \star \boxed{{ \sf \: Area = 182.25{cm}^{2} }} \star

Part 4:

 \bf{ \star \: we \: know : }

 \sf \: perimeter = 4 \times side

By using this formula we can find length of side

 :   \implies\sf \: 31= 4 \times side

:  \implies\sf \: side =  \dfrac{ { \cancel{31}}^{ \:7.75 } }{ { \cancel{4}}^{ \: 1} }

: \implies \blue{   \sf side = 7.75m}

Now we can find area by using this formula:

 \sf{Area = side\times side} \:  \:  \:   \:  \: \: or \ \:  \:  \:  \:  \: Area =  {side}^{2}

 :  \implies \sf \: Area =  {7.75}^{2}

:  \implies \star \boxed{{ \sf \: Area = 60.06{m}^{2} }} \star

A Small Advice:

Beware of units. eg here in 1 part perimeter is given in cm so answer i.e. area should also be in cm and in 2 part perimeter is given in m so answer i.e. area should also be in m. ;)

═════════════════════════

And all we are done!

:D

Similar questions