find the area of the triangle formed by joining the mid points of the sides of the triangle whose vertices are (0,-1),(2,1) and (0,3). find the ratio of this area to area of the given triangle
Answers
Answered by
1
Given P is equidistant from points A and B
PA=PB .....(1)
and Q is equidistant from points A and B
QA=QB .....(2)
In △PAQ and △PBQ
AP=BP from (1)
AQ=BQ from (2)
PQ=PQ (common)
So, △PAQ≅△PBQ (SSS congruence)
Hence ∠APQ=∠BPQ by CPCT
In △PAC and △PBC
AP=BP from (1)
∠APC=∠BPC from (3)
PC=PC (common)
△PAC≅△PBC (SAS congruence)
∴AC=BC by CPCT
and ∠ACP=∠BCP by CPCT ....(4)
Since, AB is a line segment,
∠ACP+∠BCP=180
∘
Thus, AC=BC and ∠ACP=∠BCP=90
∘
∴,PQ is perpendicular bisector of AB.
Hence proved.
Tusen Takk ✌️❣️
Similar questions
World Languages,
3 months ago
Science,
3 months ago
Science,
3 months ago
Social Sciences,
7 months ago
Math,
7 months ago
Math,
1 year ago
Math,
1 year ago