Math, asked by arazak71442, 11 months ago

Find the area of the triangle formed by joining the midpoint of the sides of triangle whose vertices A(2,3)B(4,-4)C(2,6)

Answers

Answered by Anonymous
120

Given :

Vertices of triangle are : A(2, 3), B(4, -4) and C(2, 6)

Find :

Area of triangle.

Solution :

Continuing the Attachment..

We have coordinates :

→ D = (3, -1/2)

→ E = (3, 1)

→ F = (2, 9/2)

We know that..

\bold{Area\:of\:triangle\:=\: 1/2[x_{1}( y_{2}  -   y_{3}) \:   +  \: x_{2}( y_{3}  -  y_{1})  \: +  \:  x_{3}( y_{1}   -  y_{2}) ]}

Area of ΔABC :

We have..

  • x_{1} = 2
  • x_{2} = 4
  • x_{3} = 2

  • y_{1} = 3
  • y_{2} = -4
  • y_{3} = 6

Substitute the known values in above formula

\Rightarrow\: 1/2[2( - 4 \:  -  \:  6) \:   +  \: 4( 6 \:  -  \: 3)  \: +  \:  2( 3   \:  -  \:  (-4))]

\Rightarrow\:1/2[2(-10)\:+\:4(3)\:+\:2(3\:+\:4)]

\Rightarrow\:1/2[2(-10)\:+\:4(3)\:+\:2(7)]

\Rightarrow\:1/2[-\:20\:+\:12\:+\:14]

\Rightarrow\:1/2 \:\times\:6

\implies\:+\:3

Area of ΔABC = 3 sq. units

Now,

Area of ΔDEF :

We have..

  • x_{1} = 3
  • x_{2} = 3
  • x_{3} = 2

  • y_{1} = -1/2
  • y_{2} = 1
  • y_{3} = 9/2

\Rightarrow\: 1/2[3( 1\:  -  \:  9/2) \:   +  \: 3( 9/2 \:  -  \: (-1/2))  \: +  \:  2( -1/2   \:  -  \:  1)]

\Rightarrow\:1/2[3(-7/2)\:+\:3(5)\:+\:2(-3/2)

\Rightarrow\:1/2[-\:21/2\:+\:15\:-\:3

\Rightarrow\:1/2[(-\:21\:+\:30\:-\:6)/2]

\Rightarrow:1/2\:\times\:3/2

\implies\:3/4 _____ (eq 2)

Area of ΔDEF = 3/4 sq. units

If we have to find ratio.. then ratio :

→ Area of ΔDEF/Area of ΔABC = (3/4)/3

→ Area of ΔDEF/Area of ΔABC = 1/4

Ratio is 1:4

But according to question we have to find the area of the triangle formed by joining the mid points.

And after joining mid points, we have ΔDEF.

Answer :

Area of ΔDEF = 3/4 sq. units.

Attachments:
Answered by Anonymous
60

ANSWER:-

Given:

Find the area of the ∆ formed by joining the mid-points of the sides of triangle whose vertices A(2,3), B(4,-4) &C(2,6).

Solution:

Let the vertices of the ABC be;

  • A(2,3)
  • B(4,-4)
  • C(2,6)

Therefore,

Let D,E,F be the mid-points of the sides of this triangle.

Co-ordinates of D, E and F are given by;

D= ( \frac{2 + 4}{2}  \:  \frac{3 + ( - 4)}{2}) =  \frac{6}{2}   , -  \frac{1}{2}  \\  \\  =  > D= 3 ,  -  \frac{1}{2}  \\  \\ E = ( \frac{2 + 2}{2}  ,  \frac{6 - 3}{2} ) =  \frac{4}{2}  , \frac{3}{2}  \\  \\  =  > E = 2 ,  \frac{3}{2}  \\  \\ F = ( \frac{4 + 2}{2}  , \frac{ - 4 + 6}{2} )  =  \frac{6}{2}  ,  \frac{2}{2}  \\  \\  =  > F= 3 ,1

Let the vertices of ∆DEF;

  • D(3, -1/2)
  • E(2, 3/2)
  • F(3 , 1)

Now,

We know that area of triangle is:

 =  >  \frac{1}{2} [x1(y2 - y3) +x2(y3 - y1) + x3(y1 - y2)]

Area of ∆ABC,

 =  >  \frac{1}{2} [2( - 4 - 6) + 4(6 - 3) + 2(3   - ( - 4)]\\  \\  =  >  \frac{1}{2}[2 ( - 10) + 4(3) + 2(7)]\\  \\  =  >  \frac{1}{2}  \times  - 20 + 12 + 14 \\  \\  =  >  \frac{1}{2}  \times 6 \\  \\  =  > 3 sq. \: units

Now,

Area of ∆DEF

 =  >  \frac{1}{2} [x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2) ]\\  \\  =  >  \frac{1}{2} [3( \frac{3}{2}  - 1) + 2(1 - ( -  \frac{1}{2} ) + 3( -  \frac{1}{2}  -  \frac{3}{2} )] \\  \\  =  >  \frac{1}{2} [3( \frac{3 - 2}{2} ) + 2( \frac{2 + 1}{2} ) + 3( \frac{ - 1 - 3}{2} ) ]\\  \\  =  >  \frac{ 1}{2} [3( \frac{1}{2} ) + 2( \frac{3}{2} ) + 3( -  \frac{4}{2} )] \\  \\  =  >  \frac{1}{2} ( \frac{3}{2}  +  \frac{6}{2}  + (  \frac{ - 12}{2} )) \\  \\  =  >  \frac{1}{2}  \times  \frac{3 + 6 - 12}{2}  \\  \\  =  >  \frac{1}{2}  \times  \frac{ - 3}{2}  \\  \\  =  >   - \frac{3}{4} sq. \: units

Therefore,

Required ratio (3: -3/4)

Hope it helps ☺️

Attachments:
Similar questions