Computer Science, asked by Aeviternal, 5 months ago

Find the area of the triangle with sides 21 cm, 16 cm and 13 cm. Also, find the perimeter of an equilateral
triangle equal in area to this triangle.​

Answers

Answered by Anonymous
1739

Area of an equilateral triangle = Area of triangle with sides 21cm, 16cm and 13cm.

Now,

Let's find the Area of triangle with given sides.

We know that,

\sf{ s = \dfrac{a + b + c}{2}}

\sf{ = \dfrac{21 + 16 + 13}{2}}

\sf{ = \dfrac{50}{2}}

\sf{ = 25}

Using Heron's Formula,

\sf{Area = \sqrt{s(s - a)(s - b)(s - c)}}

\sf {= \sqrt{25(25 - 21)(25 - 16)(25 - 13)}}

\sf{ = \sqrt{25 \times 4 \times 9 \times 12}}

\sf{ = \sqrt[60]{3}}

Thus, Area = \sf{ \sqrt[60]{3}}

Now,

\sf{Area \: of \: equilateral \: triangle = \dfrac{ \sqrt{3} }{4} \times a^{2}}

\pink\implies

\sf{\dfrac{ \sqrt{3} }{4} {a}^{2} = 60 \sqrt{3}}

Cancelling \sf\sqrt{3} on both sides,

\sf{ \dfrac{ {a}^{2} }{4} = 60}

\sf{ a^{2} = 60 \times 4}

\sf{a = \sqrt{240}}

a = \sf{ \sqrt[4]{15}}

Thus, Side of the equilateral triangle is \sf{ \sqrt[4]{15}}.

Now,finding the perimeter.

\sf{Perimeter \: of \: triangle = 3a}

\sf{ = 3 \times \sqrt[4]{15}}

\sf {= \sqrt[12]{15}}

Thus,

Perimeter of the equilateral triangle is \large\sf{ \sqrt[12]{15}}

\large\sf\pink{\sqrt[12]{15} }

Answered by sweetytweety2
21

Hope its helpful to you

Please mark me as a brainliest

Attachments:
Similar questions