Math, asked by soumali7345, 10 months ago

Find the area of triangle whose coordinates are (1,2),(3,4) and (5,10)

Answers

Answered by monish2107
0

A=(1,2)

B=(3,4)

C=(5,10)

We will use distance formula to find the sides of triangle

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

\begin{lgathered}A=(x_1,y_1)=(1,2)\\B=(x_2,y_2)=(3,4)\end{lgathered}

A=(x

1

,y

1

)=(1,2)

B=(x

2

,y

2

)=(3,4)

Substitute the values

AB=\sqrt{(3-1)^2+(4-2)^2}AB=

(3−1)

2

+(4−2)

2

AB=\sqrt{(2)^2+(2)^2}AB=

(2)

2

+(2)

2

AB=\sqrt{4+4}AB=

4+4

AB=\sqrt{8}AB=

8

AB=2.82AB=2.82

\begin{lgathered}B=(x_1,y_1)=(3,4)\\C=(x_2,y_2)=(5,10)\end{lgathered}

B=(x

1

,y

1

)=(3,4)

C=(x

2

,y

2

)=(5,10)

Substitute the values

BC=\sqrt{(5-3)^2+(10-4)^2}BC=

(5−3)

2

+(10−4)

2

BC=\sqrt{(2)^2+(6)^2}BC=

(2)

2

+(6)

2

BC=\sqrt{4+36}BC=

4+36

BC=\sqrt{40}BC=

40

BC=6.32BC=6.32

\begin{lgathered}A=(x_1,y_1)=(1,2)\\C=(x_2,y_2)=(5,10)\end{lgathered}

A=(x

1

,y

1

)=(1,2)

C=(x

2

,y

2

)=(5,10)

Substitute the values

AC=\sqrt{(5-1)^2+(10-2)^2}AC=

(5−1)

2

+(10−2)

2

AC=\sqrt{(4)^2+(8)^2}AC=

(4)

2

+(8)

2

AC=\sqrt{16+64}AC=

16+64

AC=\sqrt{80}AC=

80

AC=8.94AC=8.94

Now to find the area we will use heron's formula:

Area=\sqrt{s(s-a)(s-b)(s-c)}Area=

s(s−a)(s−b)(s−c)

Where s=\frac{a+b+c}{2}s=

2

a+b+c

a=2.82

b=6.32

c=8.94

Substitute the values

s=\frac{2.82+6.32+8.94}{2}s=

2

2.82+6.32+8.94

s=9.04s=9.04

Area=\sqrt{9.04(9.04-2.82)(9.04-6.32)(9.04-8.94)}Area=

9.04(9.04−2.82)(9.04−6.32)(9.04−8.94)

Area=3.910 units^2Area=3.910units

2

Hence the area of the triangle is 3.910 sq.units.

Answered by Koustab
0

Answer:

The answer is 4 sq units

Step-by-step explanation:

Plz mark as brainleist.

Attachments:
Similar questions