Math, asked by Pardhu830, 10 months ago

Find the area of triangle whose side is 12cm,6cm,15cm by heron formula

Answers

Answered by RipamMondal
3

Answer: Please check the attachment for the answer.

If you're satisfied, please do mark as BRAINLIEST...

Attachments:
Answered by Theking0123
465

★ Required answer:-

                                                      

  • Area of the triangular field is 34.19 cm².

                                   

★ Given:-    

                               

  • ⇒ Length of side a = 12 cm
  • ⇒ Length of side b = 6 cm
  • ⇒ Length of side 15 cm

                               

★ To find:-    

                               

  • Area of the triangle

                               

★ Formula used:-  

                               

  • \boxed{\sf{Semi-\:perimeter\:=\:\left\{\:\dfrac{a\:+\:b\:+\:c}{2}\:\right\}}}

Where,

  • a = Length of side a = 12 cm
  • b = Length of side b = 6 cm
  • c = Length of side c = 15 cm

\qquad\qquad\underline{\qquad\qquad\qquad\qquad\qquad\qquad}

                                        

  • \boxed{\sf{Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)} }}

Where,

  • S = semi - perimeter
  • a = Length of side a = 12 cm
  • b = Length of side b = 6 cm
  • c = Length of side c = 15 cm

                                                        

★ Solution:-  

                                       

~Semi - perimeter

                          

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\left\{\:\dfrac{a\:+\:b\:+\:c}{2}\:\right\}}

                              

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\left\{\:\dfrac{12\:+\:6\:+\:15}{2}\:\right\}}

                         

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\left\{\:\dfrac{33}{2}\:\right\}}

                       

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:16.5}

                                                                        

Hence the semi-perimeter is 16.5 cm

\qquad\qquad\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad}

                                  

~Area of the triangle

                             

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)} }

                              

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{16.5\:(\:16.5\:-\:12\:)\:(\:16.5\:-\:6\:)\:(\:16.5\:-\:15\:)} }

                               

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{16.5\:(\:4.5\:)\:(\:10.5\:)\:(\:1.5\:)} }

                           

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{16.5\:\times\:4.5\:\times\:10.5\:\times\:1.5\:} }

                               

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{1169.4375} }

                        

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:34.19\:cm^{2}}

                                                                                         

Hence the area of the triangle is 34.19 cm²

Similar questions