Math, asked by akshithas, 1 year ago

find the area of triangle whose sides are 10cm, 10cm, 16cm using heron's formula

Answers

Answered by SakshiGouniyal
3
a = 10 , b = 10 , c = 16
s = a+b+c/2
s = 10+10+16/2
s = 36 / 2
s = 18
Area of triangle = √s(s-a)(s-b)(s-b)
=√18(18-10)(18-10)(18-16)
=√18×8×8×2
= 48 cm ²


I hope this helped u ....

akshithas: thanx sakshi
SakshiGouniyal: Mention not ...
Anonymous: sakshi ur se!xy
Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=48\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle = 10 cm,10 cm,16 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{10+ 10+ 16}{2} \\ \\ : \implies s = \frac{36}{2} \\ \\ \green{ : \implies s = 18} \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{18(18- 10)(18-10)(18- 16)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{18\times 8\times 8\times 2} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{2304} \\ \\ : \implies \text{Area \: of \: triangle =}48\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 48\: {cm}}^{2} }

Similar questions