Math, asked by ommathpati40, 4 months ago

Find the area of triangle whose sides are 17cm ,25cm 26cm​​

Answers

Answered by Clαrissα
4

 \large \bf{ \underline{ \underline{Answer :}}}

  • Area of the triangle is 204 cm².

Elucidation:

Here, it's given that the sides of a triangle are 17 cm, 25 cm and 26 cm. And we are asked to calculate the area of the triangle.

Firstly, we need to calculate the semi-perimeter of the triangle, by using this formula :-

  •  \boxed{ \rm{ \gray{s =  \dfrac{a + b + c}{2}}}}

And lastly, according to the question, we'll be calculating the area of triangle,

 \bullet To calculate the area of triangle, we'll be using the heron's formula (for triangle).

  •  \boxed{\rm{ \gray {  {Area}_{(Triangle)} =  \sqrt{S(s - a)(s - b)(s - c) \: sq. \: unit } }}}

Given:

  • Sides of the triangle are 17 cm, 25 cm and 26 cm.

To Find:

  • Area of the triangle.

Calculation:

~ Calculating the semi-perimeter of the triangle,

Here,

  • a = 17 cm
  • b = 25 cm
  • c = 26 cm

Putting the values,

 \longrightarrow \sf \: s = \dfrac{a + b + c}{2} \\  \\  \\ \longrightarrow \sf \: s = \dfrac{17 + 25 + 26}{2} \\  \\  \\  \longrightarrow \sf \: s = \dfrac{68}{2} \\  \\  \\  \longrightarrow \sf \: s =  \cancel\dfrac{68}{2} \\  \\  \\  \longrightarrow \boxed{ \sf{s = 34}} \:   \blue{ \bigstar}

Therefore, semi-perimeter of the triangle is 34 cm.

 \dag According to the Question,

~ Calculating the area of triangle,

By using this formula, we'll be calculating the area of triangle,

  •  \boxed{\bf{ \red {  {Area}_{(Triangle)} =  \sqrt{S(s - a)(s - b)(s - c) \: sq. \: unit } }}}

Putting the values,

 \longrightarrow \sf {  {Area}_{(Triangle)} =  \sqrt{S(s - a)(s - b)(s - c) \: }} \\  \\  \\  \longrightarrow \sf {  {Area}_{(Triangle)} =  \sqrt{34(34 - 17)(34 - 25)(34 - 26) \: }} \\  \\  \\  \longrightarrow \sf {  {Area}_{(Triangle)} =  \sqrt{34 \times 17 \times 9 \times 8 \: }} \\  \\  \\ \longrightarrow \sf {  {Area}_{(Triangle)} = 2 \times 2 \times 17 \times 3  } \\  \\  \\  \longrightarrow \sf {  {Area}_{(Triangle)} = 4 \times 51 } \\  \\  \\ \longrightarrow { \boxed{\sf {  {Area}_{(Triangle)} = 204 \: cm^2 }}}  \: \pink{ \bigstar}

Therefore, area of triangle is 204 cm².

Answered by Anonymous
101

\large{\bf{Answer :}}

~~~~~~~

  • Area of the triangle is 204 cm².

~~~~~~~

~~~~~~~~~~~~~~ _______________

~~~~~~~~~~~~~~ Elucidation :

~~~~~~~~~~~~~~ _______________

~~~~~~~

Here,

  • It's given that the sides of a triangle are 17cm , 25cm and 26cm. And we are asked to calculate the area of the triangle.

Firstly, we need to calculate the Semi - Perimeter of the triangle, by using the formula :

~~~~~~~~

  • {\underline{\boxed{\green{\sf{s  =  \frac{a + b + c}{2} }}}}}

~~~~~~~~

And lastly, according to the question, we'll be calculating the area of triangle.

★ To calculate the area of triangle, we'll be using the heron's formula ( for triangle).

~~~~~~~~

  • \large\boxed{\sf\green{ Area_{(Triangle) }   =  \sqrt{S(s - a)(s - b)(s - c)sq. \: unit} }}

~~~~~~~~

Given :-

~~~~~~~~~

  • Sides of the triangle are 17cm , 25cm and 26cm.

~~~~~~~~~

To find :-

~~~~~~~~

  • Area of the triangle

~~~~~~~~~

Solution :-

~~~~~~~~~

Calculation :

Calculation the Semi - Perimeter of the triangle.

Here,

  • a = 17cm
  • b = 25cm
  • c = 26cm

~~~~~~~

~~~~~~~~~~~~~~~~\large\dag Putting the values,

~~~~~~~~

\implies \large{\sf{s =  \frac{a + b + c}{2} }}

~~~~~~~~

\implies \large{\sf{s =  \frac{17 + 25 + 26}{2} }}

~~~~~~~~

\implies \large{\sf{s =  \frac{68}{2}}}

~~~~~~~~

\implies \large{\sf{s = \dfrac{\cancel{68}}{\cancel{2}}}}

~~~~~~~~

\implies {\underline{\boxed{\purple{\sf{s = 34}}}}}

~~~~~~~~

Therefore,

~~~~~~~~

  • Semi - Perimeter of the triangle is 34 cm.

~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~ ___________________

~~~~~~~~~~~~~~~~~~~~~According to the question :

~~~~~~~~~~~~~~~~~~~~~ ___________________

~~~~~~~~~

\large\dag Calculating the trianglearea of triangle :

~~~~~~~~~

★ By using this formula, we'll be calculating the area of formula :

~~~~~~~~~~

  • \large\boxed{\sf\green{Area_{(Triangle)} = \sqrt{S(s - a)(s - b)(s - c)sq. \: unit}}}

~~~~~~~~~~

~~~~~~~~~~~~~~~~\large\dag Putting the values,

~~~~~~~~

\implies \large{\sf{Area_{(Triangle)} =  \sqrt{S(s - a)(s - b)(s - c)}}}

~~~~~~~~~~

\implies \large{\sf{Area_{(Triangle)} = \sqrt{34(34 - 17)(34 -25)(34 -26)}}}

~~~~~~~~~

\implies  \large{\sf{Area_{(Triangle)} =  \sqrt{34 \times 17  \times 9 \times 8} }}

~~~~~~~~~

\implies

 \large{\sf{Area_{(Triangle)}  = 2 \times 2 \times 17 \times 3}}

~~~~~~~~~

\implies\large{\sf{Area_{(Triangle)} = 4 \times 54}}

~~~~~~~~~

\implies{\underline{\boxed{\purple{\sf{Area_{(Triangle)} = 204~cm²}}}}}

~~~~~~~~

\large\dag Hence,

~~~~~~~~

  • Therefore, area of triangle is 204 cm².
Similar questions