Math, asked by thfkz8752, 1 year ago

Find the area of triangle whose sides are 18cm 24cm and 30cm also find the length of altitude corresponding to the largest side of triangle .

Answers

Answered by gurukiranfamily
7
a=18
b=24
c=30

s=18+24+30÷2
s=36cm

area=√s(s-a)(s-b)(s-c)
area=√36(36-18)(36-24)(36-30)
area=√36(18)(12)(6)
area=6√2×9×4×3×2×3
area=6×2×2×3×3
area=216cm.sq

area=1/2×b×h
216=1/2×30×h
216=15×h
h=216/15
h=14.4cm
Answered by Anonymous
64

Step-by-step explanation:

GivEn:

Sides of ∆ = 18 cm, 24 cm and 30 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

Length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

Solution:

\frak{Here} \begin{cases} & \sf{a = 18\;cm}  \\ & \sf{b = 24\;cm} \\ & \sf{c = 30\;cm} \end{cases}\\ \\

✇ Finding semi - perimeter of ∆,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\

:\implies\sf s = \dfrac{18 + 24 + 30}{2}\\ \\

:\implies\sf s = \dfrac{72}{2}\\ \\

:\implies\bf s = 36\;cm\\ \\

✇ Now, Finding area of ∆ using Heron's Formula,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{36(36 - 18)(36 - 24)(36 - 30)}\\ \\

:\implies\sf \sqrt{36 \times 18 \times 12 \times 6}\\ \\

:\implies\sf \sqrt{46656}\\ \\

:\implies{\boxed{\frak{\pink{216\;cm^2}}}}\;\bigstar\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Now, Finding length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

Here,

Largest side of ∆ is = 30 cm

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\linethickness{0.3mm}\qbezier(1, 0)(1,0)( 3,3)\qbezier(5,0)(5, 0)(3,3)\qbezier(5,0)(1,0)(1,0)\qbezier(1,0)(1,0)(4,1.5)\put(2.8,3.2){$\sf A$}\put(2.5, - 0.3){24 m}}\put(0.5,-0.2){\sf B}\put(4.5,1){30 m}\put(5.1, - 0.3){\sf C}\put(1.1,1.8){18 m}\put(4.2, 1.5){\sf D}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area = \dfrac{1}{2} \times (base) \times (height)}}}}\\ \\

:\implies\sf 216 = \dfrac{1}{ \cancel{2}} \times \cancel{30} \times (height)\\ \\

:\implies\sf 216 = 15 \times (height)\\ \\

:\implies\sf Height = 216 \times \dfrac{1}{15}\\ \\

:\implies{\boxed{\frak{\pink{Height = 14.4\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;length\;of\; altitude\;is\; \bf{14.4\;cm}.}}}

Similar questions