Math, asked by sukkagowtham1677, 1 year ago

Find the area of triangle whose sides are length 10cm 14cm and 16cm using heron's formula

Answers

Answered by nandini1612
1
hope the answer is correct
Attachments:
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=69.28\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 10 cm,14 cm,16 cm} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{10+ 14+ 16}{2}  \\  \\  : \implies s =  \frac{40}{2}  \\  \\  \green{ : \implies s = 20} \\  \\   \circ\:  \bold{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{20(20- 10)(20-14)(20-16)}  \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{20\times 10\times 6\times 4}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{4800}   \\  \\  :  \implies \text{Area \: of \: triangle =}69.28\: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 69.28 {cm}}^{2} }

Similar questions