Math, asked by chandankumar9532, 10 months ago

Find the area of triangle whose vertices are (1, –1), (–4, 6) and , (–3, –5) using herone's formulae

Answers

Answered by Anonymous
7

Given

  • A ( 1 , - 1 )
  • B ( - 4 , 6 )
  • C ( - 3 , - 5 )

To Find :

  • Area of the triangle

Solution :

 \sf Area_{triangle} =  \dfrac{1}{2}  \bigg[x_1(y_2 -y_2) +  x_2(y_3 - y_1) + x_3(y_1 - y_2) \bigg]  \\  \\ \sf x_1=1\: \: \:\: \:\:\:\:x_2=-4\: \:\:\:\: \: \:\:\:x_3=-3\\ \\\sf y_1=-1\: \:\:\:\: \: \:\:\: y_2=6\: \:\:\:\: \: \:\:\:y_3=-5 \\ \\\sf \implies \dfrac{1}{2}  \bigg[1(6 - ( -  5)) +( - 4)( - 5 - ( - 1)) + ( - 3)( - 1 - 6) \bigg] \\  \\  \sf \implies \dfrac{1}{2}  \bigg[1(6 + 5)  -  4( - 5 + 1) - 3( - 1 - 6) \bigg] \\  \\  \sf \implies  \dfrac{1}{2}  \bigg[1(11) - 4( - 4) - 3( - 7) \bigg] \\  \\  \sf \implies \dfrac{1}{2} \bigg[11 + 16 + 21 \bigg] \\  \\ \sf \implies \dfrac{1}{2} \times 48 \\  \\ \sf \implies 24

 \large \underline{ \bf Area  \: of  \: triangle  = 24  \: {cm}^{2} }

Answered by FIREBIRD
8

Step-by-step explanation:

We Have :-

a(1,- 1) \\  \\  \\ b( - 4,6) \\  \\  \\ c( - 3, - 5)

To Find :-

Area \: of \: triangle \: using \: herons \: formula

Formulas Used :-

Area \: of \: triangle \:  =  \:  \dfrac{1}{2} (x_{1} (y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2}))

Solution :-

area  \:  =  \: \dfrac{1}{2} (x_{1} (y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2})) \\  \\  \\ putting \: the \: values \\  \\  \\ area = \dfrac{1}{2} (1 (6  + 5)  - 4( - 5  + 1)  - 3( - 1- 6)) \\  \\  \\ area = \dfrac{1}{2} (1 (11)  - 4( - 4)  - 3( - 7)) \\  \\  \\ area = \dfrac{1}{2} (11  + 16   + 21) \\  \\  \\ area = \dfrac{1}{2} (48) \\  \\  \\ area = 24  \: sq \: units

Similar questions