Math, asked by yogeshcocacc, 1 year ago

Find the area of triangle whose vertices are (3,4) (5,6) (7,8)

Answers

Answered by Anonymous
0
Area =1/2*[x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2)
=0.5*[4*(3-1)+1*(1-7)+5*(7-3)]
=0.5*(4*2+1*(-6)+5*4)
=0.5*(8-6+20)
=0.5*22
=11
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=0\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (3,4) } \\  \\ \tt{: \implies Coordinate \: of \: B = (5,6) } \\  \\ \tt{: \implies Coordinate \: of \: C = (7,8) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |3(6 - 8) + 5(8 - 4) + 7(4- 6)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |3\times -2 +  5\times 4 + 7 \times -2 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-6+ 20 -14| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 0} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =0 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions