Math, asked by gokulraja72, 1 year ago

find the area of unshaded region

Attachments:

Roshni55: Does answer is 244 cm^2

Answers

Answered by srush1
3
area of bigger triangle -area of right angled triangle
first, find the third side by Pythagoras theorem and then solve using 1/2*b*h
Answered by NikkiHarish
2

\displaystyle\bf{Answer :  - }

\displaystyle\bf{Given:-}

\sf{The \:  side \:  of \:  the \:  AD = 12cm}

\sf{The  \: side  \: of  \: the  \: BD = 16cm}

\sf{The  \: side \:  of \:  the \:  BC = 42cm}

\sf{The \:  side  \: of  \: the \:  AC = 34cm}

\displaystyle\bf{Formula's \:  Used : - }

\sf{The  \: area \:  of  \: the  \: triangle = \frac{1}{2}×b×h}

 \sf{AB^{2} = BD^{2} + AD^{2}}

 \sf{The  \: heron's \:  formula, A =  \sqrt {s(s-a)(s-b)(s-c)}}

\displaystyle\bf{Solution:-}

 \sf{AB^{2} = BD^{2} + AD^{2}}

 \sf{AB^{2} = 16^{2} + 12^{2}}

 \sf{AB^{2} = 256 + 144}

 \sf{AB^{2} =400 }

 \sf{AB =  \sqrt{400} }

 \sf{ \implies AB = 20cm}

\sf{The \:  area \:  of \:  the  \: triangle = \frac{1}{2}×b×h}

 \sf{ =  \frac{1}{2}  \times 12 \times 16}

 \sf{ = 6 \times 16}

 \sf{ = 96  \: cm {}^{2} }

\sf{The  \: heron's  \: formula, A =  \sqrt {s(s-a)(s-b)(s-c)}}

 \sf{s  =  \frac{a + b + c}{2} \implies \: \frac{34 + 42 + 20}{2}  }

 \sf{ =  \frac{96}{2}  \implies \: 48cm}

\sf{ A =  \sqrt{s(s-a)(s-b)(s-c)}}

\sf{ =  \sqrt {48(48-34)(48-42)(48-20)}}

\sf{ =  \sqrt {48 \times 14 \times 6 \times 28}}

  \sf{=  \sqrt{8 \times 6 \times 2 \times 7 \times 6 \times 4 \times 7} }

 \sf{ =  \sqrt{8 \times 8 \times 7 \times 7 \times 6 \times 6} }

 \sf {= 8 \times 7 \times 6}

 \sf{ = 336  \: cm {}^{2} }

 \sf{The \:  unshaded  \: region = Total \:  area \:  of  \: triangle   - \: shaded \:  region}

  \sf{= 336 \: cm ^{2}  - 96 \:  cm{}^{2} }

 \sf{ = 240 \: cm {}^{2} }

 \displaystyle \bf{Hence,  \: The  \: unshaded \:  region \:  is = {{ \red{240  \: cm {}^{2}}} }}

Similar questions