Find the area using heron's formula: (1) 60, 50, 100 (2) 8, 8,10
Answers
Answer:
1) 1140 sq. unit 2) 31.224 sq. units
Step-by-step explanation:
1) a = 60
b = 50
c = 100
semi perimeter s = a+b+c / 2
= 210 / 2
= 105
Heons Formula =
Area of triangle = sqrt [(105) x (105-60) x (105-50)(105-100) ]
= sqrt [105 x 45 x 55 x 5]
= sqrt [1299375]
= 1140 unit sq.
2) a = 8
b = 8
c = 10
semi perimeter s = a+b+c / 2
= 26 / 2
= 13
Using Herons formula =
Area = sqrt [ (13) (13-8) (13-8) (13-10)]
= sqrt [ 13 x 5 x 5 x 3 ]
= sqrt [975]
= 31.224 unit sq.
Answer:
heron's formula =
s = a+b+c/2
area = √s(s-a)(s-b)(s-c)
1. s = 60+50+100/2
s = 210/2 = 105
area = √105(105-60)(105-50)(105-100)
= 75√231 ~ 1139.90 .sq unit
2. s = 8+8+10/2
s = 26/2 = 13
area = √13(13-8)(13-8)(13-10)
= 5√39 ~ 31.224 .sq unit