find the average marks of the students from the following table using assumed mean method.2nd question
Answers
Answer:
Average marks= 50
Step-by-step explanation:
First convert the given more than CF table to simple class interval table
class interval--freq--class mark--xifi
0_10_______5________5_______25
10-20______5________15______75
20-30______5_______25_____125
30-40______12______35_____420
40-50______9______45______405
50-60_____21______55_____1155
60-70_____7_______65______455
70-80_____7_______75_______525
80-90_____4_______85_______340
90-100_____5______95_______475
Direct mean
Average marks of students = 50
Assume Mean:
a= 45
CI_______fi_____xi____di_____difi
0-10____5_____5_____-40____-200
10-20___5_____15___ -30_____-150
20-30___5_____25___ -20____-100
30-40___12____35___-10____-120
40-50___9_____45____0______0
50-60___21____55___10_____210
60-70___7_____65___20_____140
70-80___7_____75____30____210
80-90___4_____85____40____160
90-100___5____95____50____250
Hope it helps you.
Answer:
Average marks of students = 50
Assume Mean:
a= 45
CI_______fi_____xi____di_____difi
0-10____5_____5_____-40____-200
10-20___5_____15___ -30_____-150
20-30___5_____25___ -20____-100
30-40___12____35___-10____-120
40-50___9_____45____0______0
50-60___21____55___10_____210
60-70___7_____65___20_____140
70-80___7_____75____30____210
80-90___4_____85____40____160
90-100___5____95____50____250
\begin{gathered}\bar{x} = a + \frac{ \Sigma \: d_if_i}{\Sigma \: f_i} \\ \\ \bar{x} = 45 + \frac{ - 200 - 150 - 100 - 120 + 0 +210 + 140 + 210 +160 + 250 }{80} \\ \\ = 45 + \frac{ - 570 + 970}{80} \\ \\ \bar{x} = 45 + \frac{400}{80} \\ \\ \bar{x} = 45 + 5 \\ \\ \bar{x} = 50 \\ \\ \end{gathered}
x
ˉ
=a+
Σf
i
Σd
i
f
i
x
ˉ
=45+
80
−200−150−100−120+0+210+140+210+160+250
=45+
80
−570+970
x
ˉ
=45+
80
400
x
ˉ
=45+5
x
ˉ
=50