Math, asked by melanien188, 5 days ago

Find the average value of the function on the given interval.
f(x) = \frac{sinx}{x^{2} +1}, [−π, π].

Answers

Answered by XxitzZBrainlyStarxX
6

Question:-

Find the average value of the function on the given interval.

 \sf \large f(x) = \frac{sinx}{x^{2} +1}, \sf \large[−π, π].

Given:-

 \sf \large f(x) = \frac{sinx}{x^{2} +1}, \sf \large[−π, π].

To Find:-

  • The average value of the function on the given interval.

Solution:-

Formula to get average value of f(x) in the interval

[a, b].

 \sf \large =  \frac{1}{b - a}  \int ^{b}_{a} \:  f(x)dx.

 \sf \large Here, \:  \: f(x) =  \frac{sin \: x}{x {}^{2} +1 }   \:  \: \& \:  \: f( -  x) =  \frac{sin \: x}{x {}^{2} + 1 }

So, f(x) is an odd function as f(x) + f( – x) = 0.

So, integral would be '0' in [ – π, π].

 \sf \large Here, \:  \: f(x) =  \frac{sin \: x}{x {}^{2} + 1 }

 \sf \large The \:  average  \: value  =  \frac{1}{2\pi}  \int ^{\pi} _{ - \pi} \:  \frac{sin \: x}{x {}^{2} + 1 }  \: dx

 \sf \large We \:  have \: f(x) =  \frac{sin \: x}{x {}^{2}  + 1} , \: which \: is \: symmetric \: in \:  [−π, π].

 \sf \large So,  \int ^{\pi} _{ - \pi} \:  \frac{sin \: x}{x {}^{2}  + 1}  = 0

Answer:-

The Average value will be 0.

Hope you have satisfied.

Similar questions