Math, asked by kbuvanas, 1 month ago

find the breadth, whose length is 13cm and area is 130sq.cm​

Answers

Answered by mscrazy81
1

Answer:

area=bh

130=13×b

b=130/13

b=10cm

Step-by-step explanation:

hope it helps u

Answered by BrainlyRish
4

Given : The Length of Rectangle is 13 cm & Area is 130 sq.cm .

Need To Find : Length of Rectangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❒ Let's consider the Length of Rectangle be a cm .

\dag\:\:\cal{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Area_{(Rectangle)} \:: l \times b }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀ Here l is the Length of Rectangle and b is the Breadth of Rectangle & Area of Rectangle is 130 cm² .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf{ 130 = a \times 13 }\\

\qquad \longmapsto \sf{ \cancel {\dfrac{130}{13}} = a }\\

\qquad \longmapsto \cal{\underline{\purple{ a = 10 cm }} }\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Length \:of\:Rectangle \:is\:\bf{10\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

V E R I F I C A T I O N :

\dag\:\:\cal{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Area_{(Rectangle)} \:: l \times b }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀ Here l is the Length of Rectangle and b is the Breadth of Rectangle & Area of Rectangle is 130 cm² .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf{ 130 = 10 \times 13 }\\

\qquad \longmapsto \cal{\underline{\purple{ 130cm^2 = 130 cm^2 }} }\\

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth

\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)

\qquad \leadsto \sf Area_{(Square)} = Side \times Side

\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side

\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )

\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height

\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height

\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions