Physics, asked by rajithareddy1406, 7 months ago

find the c value and give a step by step explanation​

Attachments:

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:c=6}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Force(F) = (3 \hat{i} - 2 \hat{j}  + \hat{k}) \: N \\  \\ \tt:   \implies Displacement(s) = (2 \hat{i} - 2 \hat{j} + c \hat{k} ) \:  m\\  \\  \tt:   \implies Work \: Done = 16 \: J \\  \\  \red{\underline \bold{To \: find :}} \\  \tt:  \implies Value \: of \: c =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Work \: Done = Force \times Displacement \\  \\ \tt:  \implies 16 = (3 \hat{i} - 2 \hat{j}  + \hat{k}) \times (2 \hat{i} - 2 \hat{j} + c \hat{k} ) \\  \\ \tt:  \implies 16 = (3 \hat{i} \times 2 \hat{i}) + ( - 2 \hat{j} \times  - 2 \hat{j}) + ( \hat{k} \times c \hat{k}) \\  \\  \tt \circ \:  \:   \:  \hat{i} \times  \hat{i} = 1 \\  \\  \tt \circ  \:  \: \: \hat{j} \times  \hat{j} = 1  \\  \\ \tt \circ  \:   \:  \: \hat{k} \times  \hat{k} = 1 \\  \\ \tt:  \implies 16 = 6 + 4 + c \\  \\ \tt:  \implies 16 = 10 + c \\  \\ \tt:  \implies c = 16 - 10 \\  \\  \green{\tt:  \implies c = 6} \\  \\   \green{\tt \therefore Value \: of \:  c \: is \: 6}

Answered by Anonymous
0

Given ,

Force (f) = (3i - 2j + k) N

Displacement (s) = 2i - 2j + ck) m

Work done (w) = 16 J

We know that ,

work done is dot product or scalar product of force and displacement

 \boxed { \sf{Work \:  done = f.s }}

Thus ,

16 = (3i - 2j + k) . (2i - 2j + ck)

16 = 3(2) + (-2)(-2) + 1(c)

16 = 6 + 4 + c

16 = 10 + c

c = 6

The value of c is 6

Similar questions