Math, asked by patilakanksha003, 9 months ago

find the cartesian coordinates of the point whose polar coordinates are 1 by 2 ,7 pi by 3​

Answers

Answered by pulakmath007
6

SOLUTION

TO DETERMINE

The cartesian coordinates of the point whose polar coordinates are

 \displaystyle \sf{ \bigg( \frac{1}{2}   \:  ,\:  \frac{7\pi}{3} \bigg)}

EVALUATION

Let ( r , θ ) be the polar coordinates of a point and ( x, y) be the coordinates of the same point in Cartesian Coordinate system

Then

 \displaystyle \sf{r =  \frac{1}{2} \:  \:  \: and \:  \:  \:  \theta =  \frac{7\pi}{3}  }

Now the relation between cartesian coordinate system and polar coordinate system is

 \sf{x =  r \cos \theta \:  \: and \:  \: y = r \sin \theta}

 \displaystyle \sf{x =  r \cos \theta}

 \displaystyle \sf{ \implies \: x =   \frac{1}{2}  \cos  \frac{7\pi}{3} }

 \displaystyle \sf{ \implies \: x =   \frac{1}{2}  \times  \frac{1}{2}  }

 \displaystyle \sf{ \implies \: x =   \frac{1}{4}   }

Again

 \displaystyle \sf{y =  r \sin \theta}

 \displaystyle \sf{ \implies \: y =   \frac{1}{2}  \sin  \frac{7\pi}{3} }

 \displaystyle \sf{ \implies \: y =   \frac{1}{2}   \times  \frac{ \sqrt{3} }{2}  }

 \displaystyle \sf{ \implies \: y =    \frac{ \sqrt{3} }{4}  }

Hence the required cartesian coordinates

 \displaystyle \sf{ \bigg( \: \frac{1}{4}   \:  ,\:  \frac{ \sqrt{3} }{4} \:   \bigg)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the area of the region bounded by the curve y2 – 6y + x + 5 = 0 and y-axis.

https://brainly.in/question/31154213

2. shortest distance from the origin to the plane x - 2y - 2z = 3 is

https://brainly.in/question/30723676

Similar questions
Math, 4 months ago