Math, asked by aryanpol2004, 4 months ago

find the center and the radius of the circle
x {}^{2}  + y {}^{2}  + 8x + 10y - 8 = 0

Answers

Answered by ravi2303kumar
1

Answer:

cenre = (-4,-5)

radius = 7units

Step-by-step explanation:

x^2+ y^2 + 8x + 10y -8 = 0

Given equation is of the form x^2+ y^2 + 2gx + 2fy + c = 0,

where(-g,-f) is the centre of the circle

on comparing, 2g = 8   => g=8/2  => g = 4 units

                     & 2f = 10   => f=10/2  => f = 5 units

=> centre is (-g,-f) => (-4,-5)

we know that radius , r = \sqrt{(g^2+f^2-c )} units

                                       = \sqrt{(-4)^2+(-5)^2-(-8) } units

                                       = \sqrt{16+25+8 } units

                                       = \sqrt{49 } units

                                       = 7 units

Similar questions