find the centre and radius of circle x2 + y2-2x+4y-4=0
Answers
EXPLANATION.
Equation of circle.
⇒ x² + y² - 2x + 4y - 4 = 0.
As we know that,
General equation of circle.
⇒ x² + y² + 2gx + 2fy + c = 0.
Compare both the equation, we get.
⇒ Centre of circle = (-g,-f).
⇒ Centre of circle = (1,-2).
⇒ Radius of circle = √g² + f² - c.
⇒ Radius of circle = √(1)² + (-2)² - (-4).
⇒ Radius of circle = √1 + 4 + 4.
⇒ Radius of circle = √9 = 3.
MORE INFORMATION.
General equation of circle.
(1) = A real circle if, g² + f² - c > 0.
(2) = A point circle if, g² + f² - c = 0.
(3) = An imaginary circle if, g² + f² - c < 0.
Diametral form.
If (x₁ , y₁) and (x₂ , y₂) be the extremities of a diameter, then the equation of circle is,
(x - x₁)(x - x₂) + (y - y₁)(y - y₂) = 0.
EXPLANATION.
Equation of circle.
⇒ x² + y² - 2x + 4y - 4 = 0.
As we know that,
General equation of circle.
⇒ x² + y² + 2gx + 2fy + c = 0.
Compare both the equation, we get.
⇒ Centre of circle = (-g,-f).
⇒ Centre of circle = (1,-2).
⇒ Radius of circle = √g² + f² - c.
⇒ Radius of circle = √(1)² + (-2)² - (-4).
⇒ Radius of circle = √1 + 4 + 4.
⇒ Radius of circle = √9 = 3.
MORE INFORMATION.
General equation of circle.
(1) = A real circle if, g² + f² - c > 0.
(2) = A point circle if, g² + f² - c = 0.
(3) = An imaginary circle if, g² + f² - c < 0.
Diametral form.
If (x₁ , y₁) and (x₂ , y₂) be the extremities of a diameter, then the equation of circle is,
(x - x₁)(x - x₂) + (y - y₁)(y - y₂) = 0.
_______________________________________________________________