find the centre of the circle passing through the points (3,0), (2,root5) and (-2root2,-1).
Answers
Answer:
The center of circle is ( 0.16 , 2.1 )
Step-by-step explanation:
Given as :
The points on circle are
A = (3 , 0) ,
B = ( 2 , √5 ) ,
C = ( - 2√2 , - 1 )
Let The center of circle O = (x , y)
we know that, The distance from center on any points on circle are equal
i.e OA = OB = OC
So, From distance formula
OA = OB
removing the square root
(x - 3)² + (y - 2)² = (x - 2)² + (y - √5)²
Or, x² - 6 x + 9 + y² - 4 y + 4 = x² - 4 x + 4 + y² - 2√5 y + 5
rearranging the equation'
(x² - x²) + (y² - y²) + (-6 x + 4 x) + (- 4 y + 2√5 y) + 13 - 9 = 0
Or, 0 + 0 - 2 x + (2√5 - 4) y + 4 = 0
Or, - 2 x + (2√5 - 4) y + 4 = 0 ........1
Again
From distance formula
OA = OC
Removing root both side
x² - 6 x + 9 + y² - 4 y + 4 = x² + 4√ 2 x + 8 + y² + 2 y + 1 = 0
Or, (x² - x²) + (y² - y²) +(- 6 x - 4√ 2 x) + ( - 4 y - 2 y) + 13 - 9 = 0
Or, 0 + 0 - ( 6 + 4√ 2 ) x - 6 y + 4 = 0
Or, - ( 6 + 4√ 2 ) x - 6 y + 4 = 0 ........2
Now, Solving the eq 1 and eq 2
x ( - 12 - 24 +12√5 -18√10 +16√2 ) = -24+16+8√5
Or, x =
i.e x = 0.16
Put the value of x in eq 2
- ( 6 + 4√ 2 ) x - 6 y + 4 = 0
i.e - ( 6 + 4√ 2 ) × 0.16 + 4 = 0 + y
Or, y = 2.1
Hence, The center of circle is ( 0.16 , 2.1 ) Answer