Math, asked by kumar123416, 1 year ago

find the centroid of the triangle formed by the points (0,0),(4,0),and(0,5)


shadowsabers03: Centroid = (4/3, 5/3)

Answers

Answered by Anonymous
2
Given the coordinates of the three vertices of a triangle ABC, 
the centroid O coordinates are given by

O

x

=

A

x

+

B

x

+

C

x

3

 

O

y

=

A

y

+

B

y

+

C

y

3

where Ax and Ay are the x and y coordinates of the point A etc.. 

Try this Drag any point A,B,C. The centroid O of the triangle ABC is continuously recalculated using the above formula. You can also drag the origin point at (0,0).


kumar123416: tyms bro
Anonymous: wlcc
kumar123416: wrong answer
Answered by shadowsabers03
2

Answer:

\bold{(\frac{4}{3},\ \frac{5}{3})}

Step-by-step explanation:

The\ coordinates\ of\ centroid\ of\ a\ triangle\ of\ vertices\ with \\ coordinates\ (x_1,\ y_1), (x_2,\ y_2),\ and\ (x_3,\ y_3)\ is: \\ \\ (\frac{x_1 + x_2 + x_3}{3},\ \frac{y_1 + y_2 + y_3}{3}) \\ \\ \\


\\ \\ \\ Here,\ coordinates\ of\ vertices\ are\ (0,\ 0),\ (4,\ 0)\ and\ (0,\ 5). \\ \\ x_1 = 0\ \ ;\ \ x_2 = 4\ \ ;\ \ x_3 = 0 \\ \\ y_1 = 0\ \ ;\ \ y_2 = 0\ \ ;\ \ y_3 = 5 \\ \\  \therefore\ Coordinates\ of\ centroid \\ \\ = (\frac{0 + 4 + 0}{3},\ \frac{0 + 0 + 5}{3}) \\ \\ = \bold{(\frac{4}{3},\ \frac{5}{3})} \\ \\ \\


\\ \\ \\ \therefore\ Coordinates\ is\ \bold{(\frac{4}{3},\ \frac{5}{3})}. \\ \\ \\ Hope\ this\ may\ be\ helpful. \\ \\ Please\ mark\ my\ answer\ as\ the\ \bold{brainliest}\ if\ this\ may\ be\ helpful. \\ \\ Thank\ you.\ Have\ a\ nice\ day. \\ \\ \\ \#adithyasajeevan

Similar questions