Math, asked by Aizaz8388, 10 months ago

Find the centroid of the triangle whose vertices are (2,4), (6,4), (2,0).

Answers

Answered by Janaani
0

Answer:

The centroid of the triangle is ( 10/3, 8/3).

Mark me as Brainliest.

Answered by Anonymous
21

\red{\bold{\underline{\underline{Answer}}}}

\tt\green{\therefore{Centroid=\frac{10}{3},\frac{8}{3}}}\\

\pink{\bold{\underline{Step-by-step\:explanation}}}

  • Given

 \tt  \implies Coordinate \: of \: p = (2,4) \\  \\ \tt  \implies Coordinate \: of \: q= (6,4) \\  \\ \tt  \implies Coordinate \: of \: r= (2,0)

  • To find

 \tt  \implies Centroid = ?

For finding value of centroid :

 \tt \implies x =  \frac{ x_{1} + x_{2}   +  x_{3}  }{3}  \\  \\ \tt \implies x = \frac{2 + 6 + 2}{3}  \\  \\ \tt \implies x = \frac{10}{3}  \\  \\ \tt \implies y=\frac{ y_{1} + y_{2}   +  y_{3}  }{3} \\  \\\tt \implies y=  \frac{4 + 4 +0}{3}  \\  \\ \tt \implies y= \frac{8}{3}  \\  \\   \green{\tt \therefore Centroid \: is \:  (\frac{10}{3} ,\frac{8}{3} )}


Anonymous: Appreciated :p
Similar questions