Math, asked by Kokaneakshad09, 4 months ago


Find the centroid of the triangle whose vertices are (-7,6).(6.-7).(-7,-6).​

Answers

Answered by EliteZeal
20

A n s w e r

 \:\:

G i v e n

 \:\:

  • Vertices of triangle are (-7,6) , (6,-7) , (-7,-6)

 \:\:

F i n d

 \:\:

  • Centroid of the triangle

 \:\:

S o l u t i o n

 \:\:

Centroid of a given triangle is located at the intersecting point of all three medians of the triangle

 \:\:

It can be easily localized by the vertices of triangle

 \:\:

For a triangle with vertices (x1, y1) , (x2, y2) , (x3, y3) the centroid will be -

 \:\:

 \sf \boxed { \dfrac { (x1 + x2 + x3) } { 3 } , \dfrac { (y1 + y2 + y3) } { 3 } }

 \:\:

For the given triangle -

 \:\:

  • x1 = -7

  • x2 = 6

  • x3 = -7

  • y1 = 6

  • y2 = -7

  • y3 = -6

 \:\:

Putting the above values

 \:\:

: ➜  \sf \bigg\lgroup \dfrac { (x1 + x2 + x3) } { 3 } , \dfrac { (y1 + y2 + y3) } { 3 } \bigg\rgroup

 \:\:

: ➜  \sf \bigg\lgroup \dfrac { (-7 + 6 - 7) } { 3 } , \dfrac { (6 - 7 - 6) } { 3 }  \bigg\rgroup

 \:\:

: ➜  \sf \bigg\lgroup \dfrac { (-8) } { 3 } , \dfrac { (-7) } { 3 } \bigg\rgroup

 \:\:

  • Hence the coordinates of centroid are  \sf \bigg\lgroup \dfrac { (-8) } { 3 } , \dfrac { (-7) } { 3 } \bigg\rgroup
Answered by Seafairy
53

Given :

  • (x_1,y_1)=(-7,6)
  • (x_2,y_2)=(6,-7)
  • (x_3,y_3) = (-7,-6)

To Find :

  • Centroid of the Triangle G(x,y)

Solution :

  • Co-ordinates of the centroid of the triangle is the average of the coordinates of the vertices.

\displaystyle{G(x,y) = \[\left ( \frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3} \right)\]}

\implies \displaystyle{\[\left(\frac{-7+6-7}{3},\frac{6-7-6}{3 }\right)\]}

\implies \displaystyle{\[\left(\frac{-14+6}{3}, \frac{-7}{3}\right )\]}

\implies \displaystyle{\[ \left( \frac{-8}{3}, \frac{-7}{3}\right)\]}

Required answer :

Centroid of the given triangle is {\displaystyle{\[ \left(\frac{-8}{3}, \frac{-7}{3} \right)\]}}

Similar questions