Math, asked by barikajun, 4 months ago

if sinu=x^2+y^2/x+y prove that xdu/dx+ydu/dy =3tanuएप्स आईटी यू इक्वल टू एक्स स्क्वायर वाई स्क्वायर बाय एक्स प्लस वाई प्रूफ दैट एक्स डी यू बाय एक्स प्लस वाई डिवाइडेड बाय 3 न्यू ​

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \: sinu \:  =  \: \dfrac{ {x}^{2} +  {y}^{2}  }{x + y}

\tt \: sinu \:  = \dfrac{ {x}^{2}(1 + \dfrac{ {y}^{2} }{ {x}^{2} })  }{x(1 + \dfrac{y}{x}) }

\tt \: sinu \:  = \dfrac{x(1 + \dfrac{ {y}^{2} }{ {x}^{2} }) }{1 + \dfrac{y}{x} }

\tt\implies \:sinu \: is \: a \: homogeneous \: function \: of \: degree \: 1.

\tt \:  \therefore \: By  \: Euler's  \: theorem

\tt \:   x\dfrac{\partial}{\partial \: x} sinu \:  +  \: \dfrac{\partial}{\partial \: y} sinu \:  = 1 \times sinu

\tt\implies \:xcosu\dfrac{\partial \: u}{\partial \: x}  + ycosu\dfrac{\partial \: u}{\partial \: y}  = sinu

\tt\implies \:x\dfrac{\partial \: u}{\partial \: x}  + \dfrac{\partial \: u}{\partial \: y}  = \dfrac{sinu}{cosu}

\tt\implies \:x\dfrac{\partial \: u}{\partial \: x}  + \dfrac{\partial \: u}{\partial \: y}  = tanu

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions