Math, asked by Nishtha2003, 1 year ago

Find the centroid of triangle whose vertices are (1,3) (-2,7) (5,-3)

Answers

Answered by Shreya2001
10

Here is the answer of your question.
Hope this will help you
Attachments:

Shreya2001: thnk u
Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)}=(\frac{4}{3},\frac{7}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (1,3)} \\  \\ : \implies  \text{Coordinate \: of \: B = (-2,7)} \\  \\ : \implies  \text{Coordinate \: of \: C = (5,-3)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies Centroid(G) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{ 1 +(-2 )+ 5}{3} \\  \\ : \implies x = \frac{1-2+5}{3}  \\  \\  \green{: \implies x =\frac{4}{3}} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 3  + 7+ (-3)}{3} \\  \\ : \implies y = \frac{10-3}{3}  \\  \\  \green{: \implies y =\frac{7}{3}} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) }= (\frac{4}{3},\frac{7}{3})}

Similar questions