Physics, asked by itsshubh456, 5 months ago

Find the chance in kinetic energy if a body having mass 30 kg descends its speed from 20 m/s to 15 m/s.​

Answers

Answered by Mysterioushine
61

Given :

  • Mass of a body = 30 kg
  • Initial speed of a body = 20 m/s
  • Final speed of a body = 15 m/s

To Find :

  • The change in kinetic energy of the body

Solution :

The Kinetic energy of a body is given by ,

 \\  \star \: {\boxed{\purple{\sf{KE =  \dfrac{1}{2}m {v}^{2}  }}}} \\

First let us calculate the initial kinetic energy of the body . we have ,

  • m = 30 kg
  • u = 20 m/s

 \\   : \implies \sf \:KE_{i} =  \dfrac{1}{2}   \times 30 \times  {(20)}^{2}  \\  \\

 \\  :  \implies \sf \: KE_{i} =  15 \times  {(20)}^{2}   \\  \\

 \\   : \implies \sf \: KE_{i} = 15 \times 400 \\  \\

 \\   : \implies{\underline{\boxed{\red{\mathfrak{KE_{i} = 6000 \: J}}}}} \\  \\

So , The initial kinetic energy of the body is 6000 J.

Now , Let us calculate the Final kinetic energy of the body. We have ,

  • m = 30 kg
  • v = 15 m/s

 \\   : \implies \sf \:KE_{f} =  \dfrac{1}{2}   \times 30 \times  {(15)}^{2}  \\  \\

 \\  :  \implies \sf \: KE_{f} =  15 \times  {(15)}^{2}   \\  \\

 \\   : \implies \sf \: KE_{f} = 15 \times 225\\  \\

 \\   : \implies{\underline{\boxed{\red{\mathfrak{KE_{f} = 3375 \: J}}}}} \\  \\

Now , Calculating the change in kinetic energy ;

 \\  :  \implies \sf \Delta \: KE = KE_{f} - KE_{i} \\  \\

 \\   : \implies \sf \Delta \: KE = 3375 - 6000 \\  \\

 \\  : \implies{\underline{\boxed{\pink{\mathfrak {\Delta \:KE =  - 2625 \: J}}}}}  \: \bigstar \\  \\

Hence ,

  • The Change in kinetic energy of the given body is 2625 J.
Answered by Anonymous
82

Answer:

Given :-

  • Mass of body (M) = 30 kg
  • Initial velocity (U) = 20 m/s
  • Final velocity (V) = 15 m/s

To Find :-

Change in kinetic energy

Solution :-

As we know that

 \huge \mathrm {KE \:  =  \dfrac{1}{2} m {v}^{2} }

Let's find the initial kinetic energy

 \sf {KE}_{i} =  \dfrac{1}{2}  \times m \: u {}^{2}

 \sf \: KEi \:  =  \dfrac{1}{2}  \times 30 \times  {20}^{2}

 \sf \: KEi \:  = 1 \times 15 \times 400

 \sf \: KEi \:  = 6000 \: J

Now,

Let's find final kinetic energy

 \sf \: KEf \:  =  \dfrac{1}{2}  \times mv {}^{2}

 \sf \: KEf \:  =  \dfrac{1}{2}  \times 30 \times  {15}^{2}

 \sf \: KEf \:  = 1 \times 15 \times 225

 \sf \: KEf \:  = 15 \times 225

 \sf \: KEf = 3375

Now,

Let's find the change in kinetic energy

 \sf \: change \: in \: KE = KEf - KEi

 \sf \triangle \: KE = 3375 - 6000

 \sf \triangle \: KE =  - 2625 \: J

Similar questions