Math, asked by rishabh3646, 1 year ago

find the circumference of circle with area 1/4rd2

Attachments:

Answers

Answered by yajmera8
0

area = 1/4*pi*d*d

pi*r*r=pi*d*d*1/4

Canceling pi both sides

r*r=d*d/4

Square rooting both side,

r=d/2

circumference=2*pi*r

=2*pi*d/2

=pi*d cm


rishabh3646: bhai copy par Karke dikha do Aise samajh mein nahi aa raha hai
yajmera8: are thoda dhyan se dekho bhai.. smjh aa jaega
rishabh3646: ok
rishabh3646: * mlt multiply hota hai kya
yajmera8: ha.
yajmera8: and do mark it as brainliest
yajmera8: i mean give 5 stars
yajmera8: amd thanks
rishabh3646: thank you so much
Answered by TRISHNADEVI
16
\underline{\underline{\bold{\red{\: \:(1)\:\: QUESTION\: \:}}}}

 \bold{\: \:Find \: \: the \: \: value \: \: of \: \: \frac{1}{x {}^{0} } \: }

\underline{\underline{\bold{\red{\: \: SOLUTION\: \:}}}}

 \bold{We \: \: know \: \: that,} \\ \\ \boxed{ \bold{(Any \: \: number) {}^{0} = 1}} \\ \\ \bold{So,} \\ \\ \bold{ \underline{ \: x {}^{0} = 1 \: }\: \: \: - - - - - - > (1) } \\ \\ \bold{Now,} \\ \\ \bold{ \frac{1}{x {}^{0} } = \frac{1}{1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [From(1)]} \\ \\ = > \boxed{\bold{ \frac{1}{x {}^{0} } = 1 }}

___________________________________________________
___________________________________________________

\underline{\underline{\bold{\red{\: \: (2) \: \: QUESTION\: \:}}}}

 \bold{Find \: \: the \: \: circumference \: \: of \: \: circle} \\ \bold{with \: \: area \: \: \frac{1}{4} \pi \: d {}^{2} \: \:cm {}^{2} \: .}

\underline{\underline{\bold{\red{\: \: SOLUTION\: \:}}}}

 \bold{Let,} \\ \\ \bold{The \: \: radius \: \: of \: \: the \: \: circle \: = r \: \: cm} \\ \\ \bold{So ,\: \: \: the \: \: area \: \: of \: \: the \: \: circle = \pi \: r {}^{2} \: \: c m {}^{2} } \\ \\ \bold{Given,} \\ \\ \bold{Area \: \: of \: \: the \: \: circle = \frac{1}{4}\pi \: d {}^{2} \: \: cm {}^{2} } \\ \\ \bold{ = > \pi \: r {}^{2} = \frac{1}{4}\pi \: d {}^{2} } \\ \\ \bold{ = > r {}^{2} = \frac{d {}^{2} }{4} } \\ \\ \bold{ = > r {}^{2} = ( \frac{d}{2} ) {}^{2} } \\ \\ \bold{ = > r = \frac{d}{2} \: \: cm } \\ \\ \bold{Radius \: \: of \: \: the \: \: circle = \frac{d}{2} \: \: \: cm} \\ \\ \bold{Now,} \\ \\ \bold{If \: \: the \: \: radius \: \: of \: \: circle = r \: ,\: then} \\ \bold{The \: \: circumference \: \: of \: \: the} \\ \bold{ \: \: circle =2\pi \: r } \\ \\ \bold{ = 2 \times \pi \: \times \frac{d}{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (as \: \: r = \frac{d}{2} )} \\ \\ \bold{ = \pi \: d} \\ \\ \\ \boxed{\bold{Circumference \: \: of \: \: the \: \: circle = \pi \: d \: \: \: cm}}

___________________________________________________
___________________________________________________

\underline{\underline{\bold{\red{\: \:(3) \: \: QUESTION\: \:}}}}

 \bold{Find \: \: the \: \: value \: \: of \: \: 6 - x {}^{0} }

\underline{\underline{\bold{\red{\: \: SOLUTION\: \:}}}}

 \bold{We \: \: know \: \: that,} \\ \\ \boxed{ \bold{(any \: \: number) {}^{0} = 1}} \\ \\ \bold{So,} \\ \\ \bold{ \underline{ \: x {}^{0} = 1 \: } \: - - - - - - - > (1)} \\ \\ \bold{Now} \\ \\ \bold{6 - x {}^{0} = 6 - 1 \: \: \: \: \: \: \: \: \: \: [from(1)]} \\ \\ = > \boxed{ \bold{ 6 - x {}^{ 0} = 5 }}

___________________________________________________

 \mathfrak{ \red{ \: \: THANKS..}}

SmileQueen: ❤❤brainlist ans gr8 ❤❤
TRISHNADEVI: ✝N.T✝
SmileQueen: ⚓⚓⚓⚓⚓
BloomingBud: Excallent
BloomingBud: excellent*
Similar questions