Math, asked by kakashii, 4 months ago

Find the co-ordinates of point P joining the line segment (8, -9) and (2, 3) in ratio 1:2 internally.​

Answers

Answered by Anonymous
10

Answer:

Explanation:

Given :

  • Point P joining the line segment (8, -9) and (2, 3) in ratio 1:2 internally.

To Find :

  • The co-ordinate of point P.

Solution :

Let,

  • A(8 , -9) = (x₁ , y₁)
  • B(2 , 3) = (x₂ , y₂)
  • m : n = 1 : 2

Applying section formula,

\tt \red{ x =  \dfrac{mx_2 + nx_1}{m + n}  \:  \:  \: \:   \green{and} \:  \:  \:  \:  \:  \:   \:  y =  \dfrac{my_2 + ny_1}{m + n} }

Now,

 :  \implies \tt \: x =  \dfrac{1 \times 2 + 2 \times 8}{1 + 2}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: y =  \dfrac{1 \times 3 + 2 \times ( - 9)}{1 + 2}  \\  \\  \\ :  \implies \tt \: x =   \dfrac{2 + 16}{3}  \:  \:   \:  \: \:  \:  \: and \:  \:  \:   \:  \: \:  \: y =  \dfrac{3 - 18}{3}  \\  \\  \\  :  \implies \tt \: x =   \dfrac{18}{3}  \:  \:   \:  \: \:  \:  \: and \:  \:  \:   \:  \: \:  \: y =  \dfrac{ - 15}{3}   \\  \\  \\   :  \implies \tt \: x =    \not\dfrac{18}{3}  \:  \:   \:  \: \:  \:  \: and \:  \:  \:   \:  \: \:  \: y =  \not\dfrac{ - 15}{3}   \\  \\  \\   : \implies \tt \red{ x = 6} \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \green{y =  - 5} \\  \\  \\  :  \implies \tt \purple{ \therefore \: p(x,y) = (6, - 5)} \\  \\  \\   \underline{ \therefore \tt \: The \: co - ordinate \: of \: point \: P \: is \: (6,- 5).}


ItzInnocentPrerna: Sir plz unblock me
ItzInnocentPrerna: Actually I have 1 doubt...So it will be very grateful of u if u unblock me
Anonymous: Great
Answered by anshu24497
2

\huge\mathfrak{\underline{\color{purple}{{{Solution :}}}}}

Let,

  • A(8 , -9) = (x₁ , y₁)

  • B(2 , 3) = (x₂ , y₂)

  • m : n = 1 : 2

 \sf{ \color{teal}{Applying~ section ~formula,}}

 \boxed{\bf {\purple{{ x = \dfrac{mx_2 + nx_1}{m + n} \: \: \: \: and\: \: \: \: \: \: \: y = \dfrac{my_2 + ny_1}{m + n} }}}}

Now,

\begin{gathered}\implies \rm \:{ \orange{ x = \dfrac{1 \times 2 + 2 \times 8}{1 + 2} \: \: \: \: \: \: \: and \: \: \: \: \: \: y = \dfrac{1 \times 3 + 2 \times ( - 9)}{1 + 2} }}\\ \\ \\  \implies \rm\: { \orange{x = \dfrac{2 + 16}{3} \: \: \: \: \: \: \: and \: \: \: \: \: \: \: y = \dfrac{3 - 18}{3}}} \\ \\ \\  \implies \rm\: { \orange{x = \dfrac{18}{3} \: \: \: \: \: \: \: and \: \: \: \: \: \: \: y = \dfrac{ - 15}{3} }}\\ \\ \\ \implies \rm\: { \orange{x = \cancel\dfrac{18}{3} \: \: \: \: \: \: \: and \: \: \: \: \: \: \: y = \cancel\dfrac{ - 15}{3}}} \\ \\ \\ \implies \rm  {\underline{\pink{{x = 6 \: \: \: \: \: \: \: and \: \: \: \: \: \: \: {y = - 5}}}}} \\ \\ \\  \boxed{ \implies \rm \red{ \therefore \: p(x,y) = (6, - 5)}} \\ \\ \\ \underline{ \therefore \sf{ \color{green}{The \: co - ordinate \: of \: point \: P \: is \: (6,- 5).}}}\end{gathered}

Similar questions