Math, asked by soumyadip64, 1 year ago

Find the co-ordinates of the centroid of triangle PQR whose vertics are P(6,3),Q(-2,5) and R(-1,7).

Answers

Answered by prashanttyagi27
7
i hope this will help you
Attachments:

prashanttyagi27: welcome
soumyadip64: Why the photo is much blurr?
prashanttyagi27: you can't see it properly
soumyadip64: Yeah I can see it but still some parts are blurr. Can you again send e this pic with a clear photo this time
prashanttyagi27: sorry something got wrong to the camera
prashanttyagi27: please you can manage by this
soumyadip64: OK fine
prashanttyagi27: thanks
prashanttyagi27: anything you have problem in the photo you can ask
soumyadip64: ok
Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(1,5)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: P = (6,3)} \\ \\ : \implies \text{Coordinate \: of \: Q = (-2,5)} \\ \\ : \implies \text{Coordinate \: of \: R = (-1,7)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{6+(-2)+ (-1)}{3} \\ \\ : \implies x = \frac{3}{3} \\ \\ \green{: \implies x =1} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{ 3 +5+7}{3} \\ \\ : \implies y = \frac{15}{3} \\ \\ \green{: \implies y =5} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(1,5)}

Similar questions