Find the co ordinates of vertex A of an equilateral triangle ABC,if the vertices B and C are (2a,0) and (a,-a) respectively and also find its side length .
Answers
Step-by-step explanation:
Coordinates of B: B(2a,0)
Coordinates of C: C(a,-a)
Let the coordinates of A be (x,y).
In the equilateral ABC, we know AB=BC=CA
⇒AB²=BC²=CA²
AB=
AB²=(x-2a)²+(y-0)²
AB²=x²+4a²-4ax+y² -------------------(i)
Similarly,
BC²= {(2a-a)²+(0-(-a)]²}
BC²=a²+a²
BC²=2a²-------------------------(ii)
Now, AC²= (a-x)²+(-a-y)²
AC²=a²+x²-2ax+(a²+y²-2ay)
AC²=a²+x²-2ax+a²+y²-2ay
AC²=2a²+x²+y²-2ax-2ay-------------------------(iii)
We know,
AB²=AC²
or x²+4a²-4ax+y²=2a²+x²+y²-2ax-2ay
or x²-x²+4a²-2a²-4ax+2ax+y²-y²+2ay=0
or 2a²-2ax+2ay=0
or a²-ax+ay=0
or a-x+y=0
or x+y=a ⇒x=a-y---------------------------------(iv)
Again,
AB²=BC²
or x²+4a²-4ax+y²=2a²
or x²+2a²-4ax+y²=0
or (a-y)²+2a²-4a(a-y)+y²=0
or a²+y²-2ay+2a²-4a²+4ay+y²=0
or 2y²-a²+2ay=0
or 2y²+2ay=a²
or y(2y+2a)=a²
or y=a²/(2y+2a)---------------------------------(v)
Now,
x=a-y
or x=a-a²/(2y+2a)
or x=2ay+2a²-a²/2y+2a
or x=2ay+a²/2y+2a-----------------------------------(vi)
Thus, the coordinates of A are .
geometeryyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyStep-by-step explanation: sorry bruh