Math, asked by levikunaal9653, 1 year ago

Find the coefficient of x^7 in the expansion of (x^2+1/x)^11

Answers

Answered by mysticd
35

Answer:

\red { Coefficient \:of \:x^{7} }\green {= 462}

Step-by-step explanation:

 Given \: \left(x^{2} + \frac{1}{x}\right)^{11}

 General \: term \:of \: binomial \: expansion \\(a+b)^{n} \: is\: t_{n}

 \boxed {\pink { t_{n} = ^nC_{r} \cdot a^{n-r}\cdot  b^{r} }}

 Here , a = x^{2} , b = \frac{1}{x} \:and \:n = 11

 t_{n} = ^{11} C_{r} \times (x^{2})^{11-r} \times \left(\frac{1}{x}\right)^{r}

 = ^{11}C_{r} \times x^{22-2r} \times x^{r}\\= ^{11}C_{r} \times x^{22-2r-r}\\= ^{11}C_{r}\times x^{22-3r} \:--(1)

/* According to the problem given,

 22-3r = 7 \: (Given)

 \implies -3r = 7 - 22

\implies r = \frac{-15}{-3} = 5

 Coefficient \: of \: x^{7} = ^{11}C_{r} \\= ^{11}C_{5}

 = \frac{11!}{(11-5)! 5!}\\= \frac{11!}{6! 5! }\\= \frac{11\cdot10\cdot9\cdot8\cdot7\cdot6!}{6! \times 5\cdot4\cdot3\cdot2\cdot1 }\\= 462

Therefore.,

 \red { Coefficient \:x^{7} }\green {= 462 }

•••♪

Answered by BendingReality
31

Answer:

\displaystyle \red{{\rightarrow 462}}

Step-by-step explanation:

Given :

\displaystyle{\left(x^{7}-\frac{1}{x}\right)^{11}}\\\\\\\display \text{We have : }\\\\\\\displaystyle{\text{T}}_{r+1}= \ ^{n}\text{C}_r \ a^{n-r} \ b^{r}}\\\\\\\displaystyle{\text{T}}_{6+1}= \ ^{11}\text{C}_6 \ x^{11-6} \ 1/x^{6}}\\\\\\\displaystyle{\text{T}}_{7}= \ ^{11}\text{C}_6 \ 1/ x}\\\\\\\display \text{Now coefficient of $x^{7}$}\\\\\\\displaystyle{\implies \frac{11!}{(11-6)!\times 6!} }\\\\\\\displaystyle{\implies \frac{11!}{5!\times 6!} }

\displaystyle{\implies \frac{11\times10\times9\times8\times7\times6!}{5\times4\times3\times2\times1\times 6!} }\\\\\\\displaystyle{\implies 11\times2\times3\times7}\\\\\\\displaystyle{ \implies 22\times21}\\\\\\\displaystyle{ \implies 462}\\\\\\\display \text{Therefore , the coefficient of $x^7$ is 462 in expansion of $\left(x+\frac{1}{x} \right)^{11}.$}

Similar questions