Math, asked by zadyadea9877, 1 year ago

find the coefficient of x in the expansion of (1-2x3+3x5)(1+1/x)8 ​​

Answers

Answered by sprao534
26
Please see the attachment
Attachments:
Answered by guptasingh4564
12

The coefficient of x is 154.

Step-by-step explanation:

Given,

Find the coefficient of x in the expansion of (1-2x^{3}+3x^{5})(1+\frac{1}{x})^{8}

∴  (1-2x^{3}+3x^{5})(1+\frac{1}{x})^{8}

From above expression,

We will find coefficient of x^{1},x^{-2}  and x^{-4}.

So we have,

T_{r+1} =_{r}^{8}\textrm{\mathbb{C}}(1)^{8-r}(\frac{1}{x})^{r}

T_{r+1} =_{r}^{8}\textrm{\mathbb{C}}(1)^{8-r}x^{-r}

x^{-r}=x^{1}

r=-1

This value is not possible.

And, x^{-r}=x^{-2}

r=2

Also,

x^{-r}=x^{-4}

r=4

So, For r=2 ,

T_{2+1} =-2\times _{2}^{8}\textrm{\mathbb{C}}(1)^{8-2}

T_{3} =-2\times \frac{8!}{2!\times (8-2)!}

T_{3} =-2\times \frac{8\times 7}{2}

T_{3} =-56

And, r=4,

T_{4+1} =3\times _{4}^{8}\textrm{\mathbb{C}}(1)^{8-4}

T_{5} =3\times \frac{8!}{4!\times (8-4)!}

T_{5} =3\times \frac{8\times 7\times 6\times 5}{4\times 3\times 2}

T_{5} =210

T_{3}+T_{5}

=-56+210

=154

So, The coefficient of x is 154.

Similar questions