Math, asked by gamer50, 1 month ago

Find the coefficient of 'x³ in the expansion of (3x + 4)⁶ pls answer fast with every step​

Answers

Answered by amansharma264
8

EXPLANATION.

Coefficient of x³ in the expansion.

Expansion = (3x + 4)⁶.

As we know that,

Formula of :

Binomial theorem for positive integral index.

⇒ (x + a)ⁿ = ⁿC₀xⁿa⁰ + ⁿC₁xⁿ⁻¹a + ⁿC₂xⁿ⁻²a² + . . . . . + ⁿCₙxaⁿ.

Using this formula in the equation, we get.

⇒ (3x + 4)⁶ = \sf ^{6}C_{r} (3x)^{6 - r}  (4)^{r}.

\sf \implies  ^{6}C_{r} (3)^{6 - r}  (x)^{6 - r} (4)^{r} .

\sf \implies (x)^{6 - r} = (x)^{3} .

\sf \implies  6 - r = 3.

\sf \implies  r = 3.

Put the values of r = 3 in the expansions, we get.

⇒ ⁶C₃(3)⁶⁻³ (x)⁶⁻³(4)³.

⇒ ⁶C₃(3)³(4)³(x)³.

⇒ ⁶C₃ (27) x (64) (x)³.

⇒ [6!/3! x 3!] (27)(64) (x)³.

⇒ [6 x 5 x 4 x 3!/3 x 2 x 1 x 3!] (27)(64) (x)³.

⇒ [120/6] (27)(64)(x)³.

⇒ 20 x 27 x 64 x (x)³.

34560 (x)³.

                                                                                                                       

MORE INFORMATION.

Number of terms in the expansions of (x + y + z)ⁿ.

ⁿ⁺²C₂ = (n + 1)(n + 2)/2.

Number of terms in the expansions of (x₁ + x₂ + x₃ + . . . . . + x_{k})ⁿ are,

\sf ^{n + k - 1}C_{k - 1}  when x₁, x₂, x₃ . . . . . .x_{k} all are different and can not be solved.

Answered by esuryasinghmohan
3

Step-by-step explanation:

given :

  • Find the coefficient of 'x³ in the expansion of (3x + 4)⁶ pls answer fast with every step

to find :

  • Find the coefficient of 'x

solution :

  • (3x + 4)6 = 6C₁ (3x)6—r(4)r .

  • 6C, (3)6-(x)6-r(4)'.

  • (x) 6-r = (x)³.

  • 6- r = 3.

  • ⇒ r = 3.

  • 6C₂(3)6-3 (x)6-3(4)³.

  • 6C₂(3)³(4)³(x)³.

  • °C3 (27) x (64) (x)³.

  • [6!/3! x 3!] (27)(64) (x)³.

  • [6 x 5 x 4 x 3!/3 x 2 x 1 x 3!] (27)(64) (x)³.

  • [120/6] (27)(64)(x)³.

  • 20 x 27 x 64 x (x)³.

  • 34560 (x)³.
Similar questions