Find the coefficient of 'x³ in the expansion of (3x + 4)⁶ pls answer fast with every step
Answers
Answered by
8
EXPLANATION.
Coefficient of x³ in the expansion.
Expansion = (3x + 4)⁶.
As we know that,
Formula of :
Binomial theorem for positive integral index.
⇒ (x + a)ⁿ = ⁿC₀xⁿa⁰ + ⁿC₁xⁿ⁻¹a + ⁿC₂xⁿ⁻²a² + . . . . . + ⁿCₙxaⁿ.
Using this formula in the equation, we get.
⇒ (3x + 4)⁶ = .
Put the values of r = 3 in the expansions, we get.
⇒ ⁶C₃(3)⁶⁻³ (x)⁶⁻³(4)³.
⇒ ⁶C₃(3)³(4)³(x)³.
⇒ ⁶C₃ (27) x (64) (x)³.
⇒ [6!/3! x 3!] (27)(64) (x)³.
⇒ [6 x 5 x 4 x 3!/3 x 2 x 1 x 3!] (27)(64) (x)³.
⇒ [120/6] (27)(64)(x)³.
⇒ 20 x 27 x 64 x (x)³.
⇒ 34560 (x)³.
MORE INFORMATION.
Number of terms in the expansions of (x + y + z)ⁿ.
ⁿ⁺²C₂ = (n + 1)(n + 2)/2.
Number of terms in the expansions of (x₁ + x₂ + x₃ + . . . . . + x_{k})ⁿ are,
when x₁, x₂, x₃ . . . . . .x_{k} all are different and can not be solved.
Answered by
3
Step-by-step explanation:
given :
- Find the coefficient of 'x³ in the expansion of (3x + 4)⁶ pls answer fast with every step
to find :
- Find the coefficient of 'x
solution :
- (3x + 4)6 = 6C₁ (3x)6—r(4)r .
- 6C, (3)6-(x)6-r(4)'.
- (x) 6-r = (x)³.
- 6- r = 3.
- ⇒ r = 3.
- 6C₂(3)6-3 (x)6-3(4)³.
- 6C₂(3)³(4)³(x)³.
- °C3 (27) x (64) (x)³.
- [6!/3! x 3!] (27)(64) (x)³.
- [6 x 5 x 4 x 3!/3 x 2 x 1 x 3!] (27)(64) (x)³.
- [120/6] (27)(64)(x)³.
- 20 x 27 x 64 x (x)³.
- 34560 (x)³.
Similar questions