Math, asked by Anonymous, 10 months ago

Find the complex number whose square is the complex number
a + 2 + i \sqrt{3 {a}^{2}  - 8a - 3 }

Answers

Answered by suraj62111
8

HOPE IT WILL HELP U....

Step-by-step explanation:

SELECT TO BRAINLIST ANSWER....

Attachments:
Answered by abhijattiwari1215
2

Answer:

Square root of given complex number is +-(√( (3a + 1)/2) + i√( (a - 3)/2) ).

Step-by-step explanation:

  • A number of the form z = x + iy, where x, y ∈ R, is called a complex number.
  • x is real part of complex number while y is imaginary part of complex number.
  • x = Re(z) and y = Im(z).

Square Root of Complex Number :

  • If z = x + iy, then

 \sqrt{z}  =  +  - ( \frac{  \sqrt{ |z| }  + x }{2}  + i \frac{ \sqrt{ |z| - x } }{2} )

Given that :

z =( a + 2 )+ i \sqrt{(3 {a}^{2} - 8a - 3) }

Solution :

  • Modulus of given complex number, z is

 { |z| }^{2}  =  {( a+ 2)}^{2}  + (3 {a}^{2}  - 8a - 3) \\   { |z| }^{2}=  {a}^{2}  + 4a + 4 + 3 {a}^{2}  - 8a - 3  \\ { |z| }^{2} = 4 {a}^{2}  - 4a + 1 \\  { |z| }^{2} =  {(2a - 1)}^{2} \\  |z|  = 2a - 1

  • The square root of given complex number is

 \sqrt{z}  =+- ( \sqrt{ \frac{2a - 1 + a + 2}{2} + i  \sqrt{ \frac{2a - 1 - a - 2}{2} } }  )\\  = +-( \sqrt{ \frac{3a + 1}{2} }  + i \sqrt{ \frac{a - 3}{2} })

  • Hence, square root of given complex number is +-(√( (3a + 1)/2) + i√( (a - 3)/2) ) .
Similar questions