Math, asked by manoranjanrebel855, 1 day ago

find the complimentary and particular integral of (D^2+5D+6)y)=e^x​

Answers

Answered by anthonyjustina89
1

Answer:

Let us first solve the homogeneous equation:

(D2−5D+6)yh=0

The homogeneous solution is:

(D−2)(D−3)yh=0⇒yh=Ae2x+Be3x⇒

⇒e−3xyh=Ae−x+B

Thus,

D(D+1)(e−3xyh)=0

Now, let us find a particlar solution for:

(D2+D)(e−3xyp)=x2

Take e−3xyp=a0+a1x+a2x2+a3x3

Then,

(e−3xyp)′=a1+2a2x+3a3x2⇒

⇒(e−3xyp)′′=2a2+6a3x⇒

⇒a1+2a2+(2a2+6a3)x+3a3x2=x2

So, we get that:

3a3=1⇒a3=13

2a2+6a3=0⇒2a2+2=0⇒a2=−1

a1+2a2=0⇒a1−2=0⇒a1=2

Thus,

e−3xyp=x33−x2+2x+C⇒

⇒yp=e3x(x33−x2+2x)+Ce3x⇒

⇒y=yh+yp=Ae2x+(x33−x2+2x+B)e3x

Answered by mathdude500
6

 \green{\large\underline{\sf{Solution-}}}

Given Differential equation is

\rm :\longmapsto\:( {D}^{2} + 5D + 6)y =  {e}^{x}

Its Auxiliary equation is

\rm :\longmapsto\: {D}^{2} + 5D + 6 = 0

\rm :\longmapsto\: {D}^{2} + 3D + 2D + 6 = 0

\rm :\longmapsto\:D(D + 3) + 2(D + 3) = 0

\rm :\longmapsto\:(D + 3)(D + 2) = 0

\bf\implies \:D =  - \:  2 \:  \: or \:  \: D =  - \:  3

So, Complementary function is

\rm \implies\:\boxed{ \tt{ \: CF = c_1 {e}^{ - 2x} + c_2 {e}^{ - 3x} \: }}

Now, Evaluation of Particular Integral

\rm :\longmapsto\:PI = \dfrac{1}{ {D}^{2}  + 5D + 6}  {e}^{x}

On substituting, D = 1, we get

\rm :\longmapsto\:PI = \dfrac{1}{ 1 + 5 + 6}  {e}^{x}

\rm \implies\:\boxed{ \tt{ \: PI =  \frac{ {e}^{x} }{12} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Complete Solution of

\rm :\longmapsto\:( {D}^{2} + 5D + 6)y =  {e}^{x}

\rm \:  =  \: CF + PI

\rm \:  =  \: c_1 {e}^{ - 2x} + c_2 {e}^{ - 3x}  + \dfrac{ {e}^{x} }{12}

Similar questions