Math, asked by abinavks154, 2 days ago

Find the compound interest on ₹ 31,250 at 5% pa for 2 1/2 years compounded annually.

Answers

Answered by pari2010
2

Given:

Present value =₹ 31250

Interest rate =8% per annum

Time =1

2

1

year =3/2 year and compounded half-yearly

To find the amount we have the formula,

Amount (A)=P(1+(r/100))

n

where P is present value, r is rate of interest, n is time in years.

Now substituting the values in above formula we get,

∴A=31250(1+(8/2)/100)

3

⇒A=31250(1+4/100)

3

⇒A=31250(1+1/25)

3

⇒A=31250(26/25)

3

⇒A=31250×17576/15625

⇒A=₹ 35152

∴ Compound interest =A–P

=35452–31250=₹ 3902

Answered by vikkiain
0

₹ \:  4064.45

Step-by-step explanation:

Given, \:  P=₹ \: 31250, \:  \: r = 5 \% \:  \: \:    and \:  \: \:  \:  n = 2 \frac{1}{2}  \: year \\ we \:  \: know \:  \:  \boxed{C.I =P(1 +  \frac{r}{100} )^{n}  -  P} \\ Now, \:  \: C.I = 31250(1 + \frac{5}{100}  ) ^{2 \frac{1}{2} }   - 31250\\  = 31250(1 +  \frac{1}{20} )^{2 \frac{1}{2} }  - 31250 \\  = 31250(1 +  \frac{1}{20} )^{2} (1 +  \frac{1}{20} )^{ \frac{1}{2} }  - 31250 \\  = 31250(\frac{21}{20} )^{2} (1 + \frac{1}{2}  \times \frac{1}{20} )  -31250 \\  = 31250(\frac{21}{20} )^{2} (1 +  \frac{1}{40} )  - 31250\\  = 31250(\frac{21}{20} )^{2} (\frac{41}{40} )  - 31250\\  = 31250 \times \frac{441}{400}  \times  (\frac{41}{40} )  -31250 \\  = 35314.45 - 31250 \\  =₹ \:  4064.45

Similar questions