Math, asked by senthilsathya801, 6 months ago

find the compound interest on Rs.4000 for 2 years at the rate of 10% annum interested​

Answers

Answered by prince5132
10

GIVEN :-

  • Principal , P = Rs. 4000.
  • Time , n = 2 years.
  • Rate , R = 10 %.

TO FIND :-

  • Compound Interest , C.I .

SOLUTION :-

As we know that the formula for finding the compound interest is given by,

 \\   : \implies \displaystyle \sf \: C.I = P \Bigg[\bigg(1 + \dfrac{R}{100}\bigg)^{n} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \Bigg[\bigg(1 + \dfrac{10}{100}\bigg)^{2} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \Bigg[\bigg( \dfrac{100 + 10}{100}\bigg)^{2} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \Bigg[\bigg( \dfrac{110}{100}\bigg)^{2} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \Bigg[ \dfrac{12100}{10000} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \Bigg[ \dfrac{12100 - 10000}{10000} \Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \Bigg[ \dfrac{2100 }{10000} \Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C.I = 4000 \times  \frac{2100}{10000}  \\  \\  \\

: \implies \displaystyle \sf \: C.I  = 4 \times  \frac{2100}{10}  \\  \\  \\

: \implies \displaystyle \sf \: C.I  = 210 \times 4 \\  \\  \\

: \implies  \underline{ \boxed{\displaystyle \sf \: \bold{ C.I  = 840}}} \\  \\

Hence the required compound interest is Rs. 840.

Answered by Anonymous
7

Given

  • The compound interest on Rs.4000 for 2 years at the rate of 10% annum interested.

We Find

  • The Compound Interest by given question

We Know

We used Formula :-

\begin{gathered}\\  \implies \displaystyle \sf \: C.I = P \Bigg[\bigg(1 + \dfrac{R}{100}\bigg)^{n} - 1\Bigg] \\ \\ \\\end{gathered}

According to the question

\begin{gathered}\\ \implies \displaystyle \sf \: C.I = P \Bigg[\bigg(1 + \dfrac{R}{100}\bigg)^{n} - 1\Bigg] \\ \\ \\\end{gathered}

\begin{gathered}\implies \displaystyle \sf \: C.I = 4000 \Bigg[\bigg( \dfrac{100 + 10}{100}\bigg)^{2} - 1\Bigg] \\ \\ \\\end{gathered} \\  \\

\begin{gathered} \implies \displaystyle \sf \: C.I = 4000 \Bigg[\bigg( \dfrac{110}{100}\bigg)^{2} - 1\Bigg] \\ \\ \\\end{gathered} \\  \\

\begin{gathered} \implies \displaystyle \sf \: C.I = 4000 \Bigg[ \dfrac{12100}{10000} - 1\Bigg] \\ \\ \\\end{gathered} \\  \\

\begin{gathered}\implies \displaystyle \sf \: C.I = 4000 \Bigg[ \dfrac{12100 - 10000}{10000} \Bigg] \\ \\ \\\end{gathered} \\  \\

\begin{gathered} \implies \displaystyle \sf \: C.I = 4000 \Bigg[ \dfrac{2100 }{10000} \Bigg] \\ \\ \\\end{gathered} \\  \\

\begin{gathered} \implies \displaystyle \sf \: C.I = 4000 \times \frac{2100}{10000} \\ \\ \\\end{gathered} \\  \\

\begin{gathered} \implies \displaystyle \sf \: C.I = 4 \times \frac{2100}{10} \\ \\ \\\end{gathered}

\begin{gathered} \implies \displaystyle \sf \: C.I = 210 \times 4 \\ \\ \\\end{gathered} \\  \\

\begin{gathered} \implies \displaystyle \sf \: \bold{ C.I = 840} \\ \\\end{gathered} \\  \\ </p><p></p><p></p><p></p><p>

Hence, Compound interest is Rs. 840.

Similar questions