Math, asked by popyflower9562, 2 months ago

If the area of a rectangular field is 2a^2 +7ab -15b^2 sq. m, find the dimensions of the field in terms of the variables.

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:Area_{(rectangle)} =  {2a}^{2}  + 7ab -  {15b}^{2}

\begin{gathered}\begin{gathered}\bf \: To  \: Find - \begin{cases} &\sf{Breadth \:} \\ &\sf{Length } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 1. \:  \:  \: \boxed{ \sf \: Area_{(rectangle)} = Length \times Breadth}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:Area_{(rectangle)} =  {2a}^{2}  + 7ab -  {15b}^{2}

\rm :\longmapsto\:Area_{(rectangle)} =  {2a}^{2}  + 10ab -  3ab - {15b}^{2}

\rm :\longmapsto\:Area_{(rectangle)} =  {2a}(a + 5b)   - 3b (a +  {5b} )

\bf\implies \:Area_{(rectangle)} = (2a - 3b)(a + 5b)

As we know,

\rm :\longmapsto\:Area_{(rectangle)} = Length \times Breadth

So, on comparing, we get

\begin{gathered}\begin{gathered}\bf \: Dimensions - \begin{cases} &\sf{Breadth = (2a - 3b) \:units} \\ &\sf{Length = (a + 5b) \: units} \end{cases}\end{gathered}\end{gathered}

Or

\begin{gathered}\begin{gathered}\bf \: Dimensions- \begin{cases} &\sf{Breadth = (a + 5b)\:units} \\ &\sf{Length = (2a - 3b) \: units} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

 1. \:  \:  \: \boxed{ \sf \: Perimeter_{(rectangle)} = 2(Length + Breadth)}

 2. \:  \:  \: \boxed{ \sf \: Area_{(circle)} = \pi \:  {r}^{2} }

 3. \:  \:  \: \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}

 4. \:  \:  \: \boxed{ \sf \: Perimeter_{(square)} = 4  \times side}

 5. \:  \:  \: \boxed{ \sf \: Area_{(square)} =  {(side)}^{2} }

Similar questions