Math, asked by Iqrakafeel11041, 19 days ago

Find the compound interest (payable yearly) and amount on 240 for 2 years at 4% per annum.​ PLS SEND THE PICTURE OF ANSWER

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Principal, p = Rs 240

Rate of interest, r = 4 % per annum compounded annually

Time, n = 2 years

We know,

Amount (A) on a certain sum of money of Rs p invested at the rate of r % per annum compounded annually for n years is

 \red{\boxed{\tt{  \:  \: Amount \:  =  \: p \:  {\bigg[1 + \dfrac{r}{100} \bigg]}^{n} \:  \: }}} \\

So, on substituting the values of p, r and n, we get

\rm \: Amount = 240 {\bigg[1 + \dfrac{4}{100} \bigg]}^{2}

\rm \: Amount = 240 {\bigg[1 + \dfrac{1}{25} \bigg]}^{2}

\rm \: Amount = 240 {\bigg[ \dfrac{25 + 1}{25} \bigg]}^{2}

\rm \: Amount = 240 {\bigg[ \dfrac{26}{25} \bigg]}^{2}

\rm \: Amount = 240  \times \dfrac{26}{25}  \times \dfrac{26}{25}

\rm\implies \:Amount = Rs \: 259.58 \:  \:  \:  \: (approx)

Now, We know

Compound Interest on a certain sum of money of Rs p, amounts to Rs A at r % per annum compounded annually for n years is given by

  \red{\boxed{\tt{  \:  \: Compound \:  Interest \:  =  \: Amount \:  -  \: p \: }}} \\

So, on substituting the values, we get

\rm \: Compound \: Interest \:  =  \: 259.58 - 240

\rm\implies \:Compound \: Interest \:  =  \: Rs \: 19.58

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. Amount (A) on a certain sum of money of Rs p invested at the rate of r % per annum compounded semi - annually for n years is

 \red{\boxed{\tt{  \:  \: Amount \:  =  \: p \:  {\bigg[1 + \dfrac{r}{200} \bigg]}^{2n} \:  \: }}} \\

2. Amount (A) on a certain sum of money of Rs p invested at the rate of r % per annum compounded quarterly for n years is

 \red{\boxed{\tt{  \:  \: Amount \:  =  \: p \:  {\bigg[1 + \dfrac{r}{400} \bigg]}^{4n} \:  \: }}} \\

3. Amount (A) on a certain sum of money of Rs p invested at the rate of r % per annum compounded monthly for n years is

 \red{\boxed{\tt{  \:  \: Amount \:  =  \: p \:  {\bigg[1 + \dfrac{r}{1200} \bigg]}^{12n} \:  \: }}} \\

Answered by NITESH761
18

Step-by-step explanation:

\sf \large \red{Given:-}

\tt Principal = 240 \:  \: rs.

\tt time = 2 \: years

\tt rate = 4  \rm{ \%} \: p.a.

\sf \large \red{Solution:-}

\boxed{\rm Amount= p \bigg( 1+ \dfrac{R}{100} \bigg)^n}

\tt : \implies 240 \bigg( 1+ \dfrac{4}{100} \bigg) ^2

\tt : \implies 240 \bigg(  \dfrac{104}{100} \bigg) ^2

\tt : \implies 240 \bigg(  \dfrac{26}{25} \bigg) ^2

\tt : \implies 240 \bigg(  \dfrac{676}{625} \bigg)

\tt : \implies 259.584 \: \: rs.

\boxed{\rm C.I = A-P}

\tt : \implies 259.584-240

\tt : \implies 19.584 \: \: rs.

Similar questions