Math, asked by sk2659327, 4 months ago

find the compound interest when it is compound annually when principal 3200Rs, r 25% per annum and time 3 year.​

Answers

Answered by MaIeficent
10

Step-by-step explanation:

Given:-

  • Principal (P) = Rs.3200

  • Rate (r) = 25%

  • Time (n) = 3 years

To Find:-

  • Compound Interest compounded annually.

Solution:-

For calculating Compound Interest first we need to find Amount

As we know that:-

The formula for calculating Amount is:-

\boxed{\sf Amount = P\bigg(1 + \dfrac{r}{100}\bigg)^{n}}

\implies \sf A = 3200 \times \bigg(1 + \dfrac{25}{100}\bigg)^{3}

\implies \sf A = 3200 \times \bigg( \dfrac{125}{100}\bigg)^{3}

\implies \sf A = 3200 \times \bigg( \dfrac{5}{4}\bigg)^{3}

\implies \sf A = 3200 \times \dfrac{5 \times 5 \times 5}{4 \times 4 \times 4}

\implies \sf A = 3200 \times \dfrac{125}{64}

\implies \sf A = 50 \times 125

\implies \sf A = 6250

\therefore \underline{\:\: \underline{\: \sf Amount = Rs.6250\:}\:\:}

\sf Compound \: Interest = Amount - Principal

\sf = 6250 - 3200

\sf = 3050

 \large\underline{ \boxed{ \therefore\textsf{ \textbf{Compound \: Interest = Rs.3050}}}}


prince5132: Awesome !!
Answered by Anonymous
368

Answer:

Given :-

  • \purple\mapsto\sf\red{Principal - Rs.3200}
  • \purple\mapsto\sf\red{Rate - 25\:percent}
  • \purple\mapsto\sf\red{Time - 3 years }

To Find -

  • {\orange\rightarrow\sf\blue{Compound\:Interest\:compound\: annually} }

Using Formula -

\pink{⟹} \sf \small \pink{Amount }= \purple{P(1 + {\dfrac{r}{100}})^{t}}

\pink{⟹} \sf \small\orange{Compound \: Interest =  \green{Amount-Principal}}

Solution -

Firstly we Find the Amount :-

\red\leadsto\sf \small \pink{A }= \purple{3200(1 + {\dfrac{25}{100}})^{3}}

\red\leadsto\sf \small \pink{A }= \purple{3200×(  {\dfrac{100 + 25}{100}})^{3}}

\red\leadsto\sf \small \pink{ A}= \purple{3200 \times ({\dfrac {\cancel{125}}{ \cancel{100}}})^{3}}

\red\leadsto\sf \small \pink{A}= \purple{3200 \times ({\dfrac{5}{4}})^{3}}

\red\leadsto\sf \small \pink{A}= \purple{3200 \times ({\dfrac{5 \times 5 \times 5}{4 \times 4 \times 4}})}

\red\leadsto\sf \small \pink{A}= \purple {\cancel{3200} \times ( {\dfrac{125} {\cancel{64}}})^{}}

\red\leadsto\sf \small \pink{A }= \purple{(50 \times 125 )}

\red\leadsto \sf \small \pink{A} = \purple {6250}

 \large \boxed{\sf{ \pink{Amount} ={\purple{6250}}}}

Now we Find the Compount Interest :-

\purple\leadsto \sf \small\orange{Compound \: Interest =  \green{6250 - 3200}}

\purple\leadsto\sf\small\orange{Compound\:Interest={\green{3050}}}

Therefore :-

\large\boxed{\sf{\orange{{Compound\:Interest=}}Rs.{\green{3050}}}}

Similar questions