find the compound interest when it is compound annually when principal 3200Rs, r 25% per annum and time 3 year.
Answers
★ AnswEr:-
- 3050
GivEn :-
- Principal = 3200
- Rate of interest = 25%
- Time = 3 years
To Find :-
- Compound interest
Solution :-
The formula of compound interest,
- Amount - Principal
- C.I = Compound Interest
- P = Principal
- r = Rate of interest
- n = Time
Answer:
★ AnswEr:-
3050
GivEn :-
Principal = 3200
Rate of interest = 25%
Time = 3 years
To Find :-
Compound interest
Solution :-
The formula of compound interest,
Amount - Principal
\underline{ \boxed{ \sf{ \: C.I = P(1 + \dfrac{r}{100})^{n} - P }}}
C.I=P(1+
100
r
)
n
−P
C.I = Compound Interest
P = Principal
r = Rate of interest
n = Time
\implies \: { \sf{ \: C.I = 3200(1 + \dfrac{25}{100})^{3} - 3200 }}⟹C.I=3200(1+
100
25
)
3
−3200
\implies\sf{ \: C.I = 3200(1 + \dfrac{1}{4})^{3} - 3200}⟹C.I=3200(1+
4
1
)
3
−3200
\implies\sf{ \: C.I = 3200 \times ( \dfrac{5}{4} )^{3} - 3200}⟹C.I=3200×(
4
5
)
3
−3200
\implies\sf{ \: C.I = 3200 \times ( \dfrac{125}{64} ) - 3200}⟹C.I=3200×(
64
125
)−3200
\implies\sf{ \: C.I = 3200 ( \dfrac{125}{64} - 1)}⟹C.I=3200(
64
125
−1)
\implies\sf{ \: C.I = 3200 ( \dfrac{125 - 64}{64} )}⟹C.I=3200(
64
125−64
)
\implies\sf{ \: C.I = 3200 \times \dfrac{61}{64} }⟹C.I=3200×
64
61
\implies\sf{ \: C.I =50 \times 61 }⟹C.I=50×61
\implies \underline{ \boxed{ \pink{ \sf{C.I = 3050}}}}⟹
C.I=3050