Math, asked by mallikajorwar532, 20 days ago

find the compounds interest on 7,500 at rate of 12% per annum for 9 months if the interest is compounded quarterly give explanation ​

Answers

Answered by EmperorSoul
8

Given :

  • P= 7,500
  • F= 4
  • R= 12%

 \\ \\

To Find :

  • The Compounds Interest = ?

 \\ \\

Solution :

 \dag Formula Used :

 {\color{black}{\bigstar}} \; {\underline{\boxed{\red{\sf{A=P( +  \frac{r}{n}) ^{nt}  }}}}}

Fullform Of The Formula's :-

\begin{gathered}\boxed{\begin {array}{cc}\\ \quad \small \underline{\bf Fullform  \: Of \:  The \:  Formula's:-}\\ \\  \sf A = Final Amount \\  \sf \:   \\  \sf \: P	=	 Initial \:  Principal  \: Balance \\  \sf \:  \\  \sf \: R	=	Interest \:  Rate \\  \\  \small \:  \sf \: N	=	Number  \: Of  \: Times  \: Interest \:  Applied  \: Per  \: Time \\  \\  \sf \:  \small \: N= Number  \: Of \:  Times  \: Interest \:  Applied  \: Per \:  Time  \: Period \\  \\  \small \sf \: T=	Number  \: Of \:  Time  \: Period \:  Elapsed\\ \\ \end {array}}\end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag Solution :

{➻ \; \; {\sf{ A = 7500(1 +   \frac{ \frac{12}{4} }{100})  ^{\frac{9}{12} \times 4}  }}} \\ \\

{➻ \; \; {\sf{ A = 7500(1 +    \frac{3}{100}) ^{3}    }}} \\ \\

{➻ \; \; {\sf{ A = 7500(1 +0.03) ^{3}    }}} \\ \\

{➻ \; \; {\sf{ A = 7500(1.03) ^{3}    }}} \\ \\

{➻ \; \; {\sf{ A = 8195.25 \cong8196   }}} \\ \\

{ \pmb{ \purple{ \frak{A = 8195.25 \cong8196}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Let's Find Compound Interest:-

 \longrightarrow \sf \: C.I = A-P

 \longrightarrow \sf \:  = 8196 - 7500 \\  \\

 \longrightarrow \sf \: C.I =   ₹\: 696

 \dag Therefore :

❛❛ The Compound Interest Is ₹696 ❜❜

 \\ {\pink{\underline{\rule{50pt}{9pt}}}}{\red{\underline{\rule{50pt}{9pt}}}}{\purple{\underline{\rule{50pt}{9pt}}}}{\color{cyan}{\underline{\rule{50pt}{9pt}}}}

Similar questions