Math, asked by limnamathew2229, 1 year ago

Find the condition that ax^3+bx^2+3cx+d=0 has its roots in AP

Answers

Answered by sahuraj457
0

let the roots be x-y, x, x+y

(x - y) + x + (x + y) =  -  \frac{b}{a}  \\  3x =  -  \frac{b}{a}  \\x =  -  \frac{b}{3a}  \\ x(x + y)(x - y) =  -   \frac{d}{a}  \\ ( -  \frac{b}{3a} )( {x}^{2}  -  {y}^{2} ) =   - \frac{d}{a}  \\  {x}^{2}  -  {y}^{2}  =  \frac{3d}{b}  \\  {x}^{2}  -  {y}^{2}  =  \frac{3d}{b}  \\  \frac{ {b}^{2} }{9 {a}^{2} }  -  {y}^{2}  =  \frac{3d}{b}  \\  {y}^{2} =  \frac{ {b}^{2} }{9 {a}^{2} }  -  \frac{3d}{b}  \\  {y}^{2}  =  \frac{ {b}^{3} - 27 {a}^{2}d  }{9 {a}^{2}b }   \\ x(x + y) + x(x - y) + (x + y)(x - y) =  \frac{c}{a}  \\ 3 {x}^{2}  -  {y}^{2}  =  \frac{c}{a}  \\ 3( \frac{ {b}^{2} }{9 {a}^{2} } ) -  \frac{ {b}^{3}  - 27 {a}^{2}d }{9 {a}^{2}b }  =  \frac{c}{a}  \\  \frac{ {b}^{3} -  {b}^{3}   + 27 {a}^{2} d}{9 {a}^{2} b}  =  \frac{c}{a}  \\ 3 \frac{d}{b}  =  \frac{c}{a}  \\ \bold{\huge{\red{3ad - bc = 0}}}

please follow me

now,

Similar questions