Math, asked by sweetheart7942, 10 months ago

Find the coordinates of midpoint of line joining the points (sin 45,tan 30),(cos 45,cot 60)

Answers

Answered by aarudhra25
31

Hope it helps

Mark as brainlist answer

Attachments:

SaiCharan9963: there is Noo clareti
Answered by mysticd
5

 Let \: A( sin 45 \degree, tan 30 \degree ) = ( x_{1} , y_{1} ) \\ and \: B( cos 45 \degree, cot 30 \degree ) = ( x_{2} , y_{2} )

 We \: know \:that ,

 Mid \: point \: of \: line \: segment \: AB \\= \Big ( \frac{ x_{1} + x_{2} }{2} , \frac{ y_{1} + y_{2} }{2}\Big)

 = \Big( \frac{ sin 45 \degree + cos 45 \degree}{2} ,\frac{ tan 30 \degree + cot 60 \degree}{2} \Big) \\= \Big( \frac{ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{2} , \frac{ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}}{2} \Big) \\= \Big( \frac{\frac{2}{\sqrt{2}}}{2} , \frac{\frac{2}{\sqrt{3}}}{2} \Big ) \\= \Big( \frac{2}{2\sqrt{2}} , \frac{2}{2\sqrt{3}} \Big ) \\= \Big( \frac{1}{\sqrt{2}} , \frac{1}{\sqrt{3}} \Big )

Therefore.,

 \red{ Mid \:point \: of \: line \: joining \:the }\\\red{ points \: ( sin 45 \degree, tan 30 \degree )\: and \: ( cos 45 \degree, cot 30 \degree ) }

 \green { = \Big( \frac{1}{\sqrt{2}} , \frac{1}{\sqrt{3}} \Big )}

•••♪

Similar questions