Math, asked by sweetheart7942, 9 months ago

Find the coordinates of midpoint of line joining the points (sin 45,tan 30),(cos 45,cot 60)

Answers

Answered by aarudhra25
31

Hope it helps

Mark as brainlist answer

Attachments:

SaiCharan9963: there is Noo clareti
Answered by mysticd
5

 Let \: A( sin 45 \degree, tan 30 \degree ) = ( x_{1} , y_{1} ) \\ and \: B( cos 45 \degree, cot 30 \degree ) = ( x_{2} , y_{2} )

 We \: know \:that ,

 Mid \: point \: of \: line \: segment \: AB \\= \Big ( \frac{ x_{1} + x_{2} }{2} , \frac{ y_{1} + y_{2} }{2}\Big)

 = \Big( \frac{ sin 45 \degree + cos 45 \degree}{2} ,\frac{ tan 30 \degree + cot 60 \degree}{2} \Big) \\= \Big( \frac{ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{2} , \frac{ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}}{2} \Big) \\= \Big( \frac{\frac{2}{\sqrt{2}}}{2} , \frac{\frac{2}{\sqrt{3}}}{2} \Big ) \\= \Big( \frac{2}{2\sqrt{2}} , \frac{2}{2\sqrt{3}} \Big ) \\= \Big( \frac{1}{\sqrt{2}} , \frac{1}{\sqrt{3}} \Big )

Therefore.,

 \red{ Mid \:point \: of \: line \: joining \:the }\\\red{ points \: ( sin 45 \degree, tan 30 \degree )\: and \: ( cos 45 \degree, cot 30 \degree ) }

 \green { = \Big( \frac{1}{\sqrt{2}} , \frac{1}{\sqrt{3}} \Big )}

•••♪

Similar questions